There have been quite a few posts on handling the lognorm
distribution with Scipy but i still dont get the hang of it.
The 2 parameter lognormal is usua
I answered in here
I leave the code here too just for lazy :D
import scipy
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
mu = 10 # Mean of sample !!! Make sure your data is positive for the lognormal example
sigma = 1.5 # Standard deviation of sample
N = 2000 # Number of samples
norm_dist = scipy.stats.norm(loc=mu, scale=sigma) # Create Random Process
x = norm_dist.rvs(size=N) # Generate samples
# Fit normal
fitting_params = scipy.stats.norm.fit(x)
norm_dist_fitted = scipy.stats.norm(*fitting_params)
t = np.linspace(np.min(x), np.max(x), 100)
# Plot normals
f, ax = plt.subplots(1, sharex='col', figsize=(10, 5))
sns.distplot(x, ax=ax, norm_hist=True, kde=False, label='Data X~N(mu={0:.1f}, sigma={1:.1f})'.format(mu, sigma))
ax.plot(t, norm_dist_fitted.pdf(t), lw=2, color='r',
label='Fitted Model X~N(mu={0:.1f}, sigma={1:.1f})'.format(norm_dist_fitted.mean(), norm_dist_fitted.std()))
ax.plot(t, norm_dist.pdf(t), lw=2, color='g', ls=':',
label='Original Model X~N(mu={0:.1f}, sigma={1:.1f})'.format(norm_dist.mean(), norm_dist.std()))
ax.legend(loc='lower right')
plt.show()
# The lognormal model fits to a variable whose log is normal
# We create our variable whose log is normal 'exponenciating' the previous variable
x_exp = np.exp(x)
mu_exp = np.exp(mu)
sigma_exp = np.exp(sigma)
fitting_params_lognormal = scipy.stats.lognorm.fit(x_exp, floc=0, scale=mu_exp)
lognorm_dist_fitted = scipy.stats.lognorm(*fitting_params_lognormal)
t = np.linspace(np.min(x_exp), np.max(x_exp), 100)
# Here is the magic I was looking for a long long time
lognorm_dist = scipy.stats.lognorm(s=sigma, loc=0, scale=np.exp(mu))
# Plot lognormals
f, ax = plt.subplots(1, sharex='col', figsize=(10, 5))
sns.distplot(x_exp, ax=ax, norm_hist=True, kde=False,
label='Data exp(X)~N(mu={0:.1f}, sigma={1:.1f})\n X~LogNorm(mu={0:.1f}, sigma={1:.1f})'.format(mu, sigma))
ax.plot(t, lognorm_dist_fitted.pdf(t), lw=2, color='r',
label='Fitted Model X~LogNorm(mu={0:.1f}, sigma={1:.1f})'.format(lognorm_dist_fitted.mean(), lognorm_dist_fitted.std()))
ax.plot(t, lognorm_dist.pdf(t), lw=2, color='g', ls=':',
label='Original Model X~LogNorm(mu={0:.1f}, sigma={1:.1f})'.format(lognorm_dist.mean(), lognorm_dist.std()))
ax.legend(loc='lower right')
plt.show()
I made the same observations: a free fit of all parameters fails most of the time. You can help by providing a better initial guess, fixing the parameter is not necessary.
samp = stats.lognorm(0.5,loc=0,scale=1).rvs(size=2000)
# this is where the fit gets it initial guess from
print stats.lognorm._fitstart(samp)
(1.0, 0.66628696413404565, 0.28031095750445462)
print stats.lognorm.fit(samp)
# note that the fit failed completely as the parameters did not change at all
(1.0, 0.66628696413404565, 0.28031095750445462)
# fit again with a better initial guess for loc
print stats.lognorm.fit(samp, loc=0)
(0.50146296628099118, 0.0011019321419653122, 0.99361128537912125)
You can also make up your own function to calculate the initial guess, e.g.:
def your_func(sample):
# do some magic here
return guess
stats.lognorm._fitstart = your_func
If you are just interested in plotting you can use seaborn to get a lognormal distribution.
import seaborn as sns
import numpy as np
from scipy import stats
mu=0
sigma=1
n=1000
x=np.random.normal(mu,sigma,n)
sns.distplot(x, fit=stats.norm) # normal distribution
loc=0
scale=1
x=np.log(np.random.lognormal(loc,scale,n))
sns.distplot(x, fit=stats.lognorm) # log normal distribution
I realized my mistakes:
A) The samples i am drawing need to come from the .rvs
method. Like so:
sample_dist = sp.stats.lognorm.rvs(3, loc=0, scale=np.exp(10), size=2000)
B) The fit has some problems. When we fix the loc
parameter the fit succeeds much better.
param=sp.stats.lognorm.fit(samp, floc=0)
This problem has been fixed in newer scipy versions. After upgrading scipy0.9 to scipy0.14 the problem dissapears.