What's the algorithm behind Math.pow() in Java

前端 未结 1 424
小鲜肉
小鲜肉 2020-12-24 15:36

I just started with Java and as a first project I am writing a program that finds roots(cube root in this case) of a given number. Presently I am trying out Newton-Ralphson

相关标签:
1条回答
  • 2020-12-24 16:12

    This is a fun question. If you look into the the source code for Java's Math class, you will find that it calls StrictMath.pow(double1, double2), and StrictMath's signature is public static native double pow(double a, double b);

    So, in the end, it is a truly native call that might differ depending on the platform. However, there is an implementation somewhere, and it isn't very easy to look at. Here is the description of the function and the code for the function itself:

    Note

    Looking through the math, trying to understand it might inevitably lead to even more questions. But, by searching through this Github on Java Math Function Source Code and glancing out the mathematical summaries, you can definitely understand the native functions better. Happy Exploring :)

    Method Description

    Method:  Let x =  2   * (1+f)
          1. Compute and return log2(x) in two pieces:
                  log2(x) = w1 + w2,
             where w1 has 53-24 = 29 bit trailing zeros.
          2. Perform y*log2(x) = n+y' by simulating muti-precision
             arithmetic, where |y'|<=0.5.
          3. Return x**y = 2**n*exp(y'*log2)
    

    Special Cases

          1.  (anything) ** 0  is 1
          2.  (anything) ** 1  is itself
          3.  (anything) ** NAN is NAN
          4.  NAN ** (anything except 0) is NAN
          5.  +-(|x| > 1) **  +INF is +INF
          6.  +-(|x| > 1) **  -INF is +0
          7.  +-(|x| < 1) **  +INF is +0
          8.  +-(|x| < 1) **  -INF is +INF
          9.  +-1         ** +-INF is NAN
          10. +0 ** (+anything except 0, NAN)               is +0
          11. -0 ** (+anything except 0, NAN, odd integer)  is +0
          12. +0 ** (-anything except 0, NAN)               is +INF
          13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
          14. -0 ** (odd integer) = -( +0 ** (odd integer) )
          15. +INF ** (+anything except 0,NAN) is +INF
          16. +INF ** (-anything except 0,NAN) is +0
          17. -INF ** (anything)  = -0 ** (-anything)
          18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
          19. (-anything except 0 and inf) ** (non-integer) is NAN
    

    Accuracy

           pow(x,y) returns x**y nearly rounded. In particular
                          pow(integer,integer)
           always returns the correct integer provided it is
           representable.
    

    Source Code

    #ifdef __STDC__
            double __ieee754_pow(double x, double y)
    #else
            double __ieee754_pow(x,y)
            double x, y;
    #endif
    {
            double z,ax,z_h,z_l,p_h,p_l;
            double y1,t1,t2,r,s,t,u,v,w;
            int i0,i1,i,j,k,yisint,n;
            int hx,hy,ix,iy;
            unsigned lx,ly;
    
            i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
            hx = __HI(x); lx = __LO(x);
            hy = __HI(y); ly = __LO(y);
            ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
    
        /* y==zero: x**0 = 1 */
            if((iy|ly)==0) return one;
    
        /* +-NaN return x+y */
            if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
               iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
                    return x+y;
    
        /* determine if y is an odd int when x < 0
         * yisint = 0       ... y is not an integer
         * yisint = 1       ... y is an odd int
         * yisint = 2       ... y is an even int
         */
            yisint  = 0;
            if(hx<0) {
                if(iy>=0x43400000) yisint = 2; /* even integer y */
                else if(iy>=0x3ff00000) {
                    k = (iy>>20)-0x3ff;        /* exponent */
                    if(k>20) {
                        j = ly>>(52-k);
                        if((j<<(52-k))==ly) yisint = 2-(j&1);
                    } else if(ly==0) {
                        j = iy>>(20-k);
                        if((j<<(20-k))==iy) yisint = 2-(j&1);
                    }
                }
            }
    
        /* special value of y */
            if(ly==0) {
                if (iy==0x7ff00000) {       /* y is +-inf */
                    if(((ix-0x3ff00000)|lx)==0)
                        return  y - y;      /* inf**+-1 is NaN */
                    else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
                        return (hy>=0)? y: zero;
                    else                    /* (|x|<1)**-,+inf = inf,0 */
                        return (hy<0)?-y: zero;
                }
                if(iy==0x3ff00000) {        /* y is  +-1 */
                    if(hy<0) return one/x; else return x;
                }
                if(hy==0x40000000) return x*x; /* y is  2 */
                if(hy==0x3fe00000) {        /* y is  0.5 */
                    if(hx>=0)       /* x >= +0 */
                    return sqrt(x);
                }
            }
    
            ax   = fabs(x);
        /* special value of x */
            if(lx==0) {
                if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
                    z = ax;                 /*x is +-0,+-inf,+-1*/
                    if(hy<0) z = one/z;     /* z = (1/|x|) */
                    if(hx<0) {
                        if(((ix-0x3ff00000)|yisint)==0) {
                            z = (z-z)/(z-z); /* (-1)**non-int is NaN */
                        } else if(yisint==1)
                            z = -1.0*z;             /* (x<0)**odd = -(|x|**odd) */
                    }
                    return z;
                }
            }
    
            n = (hx>>31)+1;
    
        /* (x<0)**(non-int) is NaN */
            if((n|yisint)==0) return (x-x)/(x-x);
    
            s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
            if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
    
        /* |y| is huge */
            if(iy>0x41e00000) { /* if |y| > 2**31 */
                if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
                    if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
                    if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
                }
            /* over/underflow if x is not close to one */
                if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
                if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
            /* now |1-x| is tiny <= 2**-20, suffice to compute
               log(x) by x-x^2/2+x^3/3-x^4/4 */
                t = ax-one;         /* t has 20 trailing zeros */
                w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
                u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
                v = t*ivln2_l-w*ivln2;
                t1 = u+v;
                __LO(t1) = 0;
                t2 = v-(t1-u);
            } else {
                double ss,s2,s_h,s_l,t_h,t_l;
                n = 0;
            /* take care subnormal number */
                if(ix<0x00100000)
                    {ax *= two53; n -= 53; ix = __HI(ax); }
                n  += ((ix)>>20)-0x3ff;
                j  = ix&0x000fffff;
            /* determine interval */
                ix = j|0x3ff00000;          /* normalize ix */
                if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
                else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
                else {k=0;n+=1;ix -= 0x00100000;}
                __HI(ax) = ix;
    
            /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
                u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
                v = one/(ax+bp[k]);
                ss = u*v;
                s_h = ss;
                __LO(s_h) = 0;
            /* t_h=ax+bp[k] High */
                t_h = zero;
                __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
                t_l = ax - (t_h-bp[k]);
                s_l = v*((u-s_h*t_h)-s_h*t_l);
            /* compute log(ax) */
                s2 = ss*ss;
                r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
                r += s_l*(s_h+ss);
                s2  = s_h*s_h;
                t_h = 3.0+s2+r;
                __LO(t_h) = 0;
                t_l = r-((t_h-3.0)-s2);
            /* u+v = ss*(1+...) */
                u = s_h*t_h;
                v = s_l*t_h+t_l*ss;
            /* 2/(3log2)*(ss+...) */
                p_h = u+v;
                __LO(p_h) = 0;
                p_l = v-(p_h-u);
                z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
                z_l = cp_l*p_h+p_l*cp+dp_l[k];
            /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
                t = (double)n;
                t1 = (((z_h+z_l)+dp_h[k])+t);
                __LO(t1) = 0;
                t2 = z_l-(((t1-t)-dp_h[k])-z_h);
            }
    
        /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
            y1  = y;
            __LO(y1) = 0;
            p_l = (y-y1)*t1+y*t2;
            p_h = y1*t1;
            z = p_l+p_h;
            j = __HI(z);
            i = __LO(z);
            if (j>=0x40900000) {                            /* z >= 1024 */
                if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
                    return s*huge*huge;                     /* overflow */
                else {
                    if(p_l+ovt>z-p_h) return s*huge*huge;   /* overflow */
                }
            } else if((j&0x7fffffff)>=0x4090cc00 ) {        /* z <= -1075 */
                if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
                    return s*tiny*tiny;             /* underflow */
                else {
                    if(p_l<=z-p_h) return s*tiny*tiny;      /* underflow */
                }
            }
        /*
         * compute 2**(p_h+p_l)
         */
            i = j&0x7fffffff;
            k = (i>>20)-0x3ff;
            n = 0;
            if(i>0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */
                n = j+(0x00100000>>(k+1));
                k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
                t = zero;
                __HI(t) = (n&~(0x000fffff>>k));
                n = ((n&0x000fffff)|0x00100000)>>(20-k);
                if(j<0) n = -n;
                p_h -= t;
            }
            t = p_l+p_h;
            __LO(t) = 0;
            u = t*lg2_h;
            v = (p_l-(t-p_h))*lg2+t*lg2_l;
            z = u+v;
            w = v-(z-u);
            t  = z*z;
            t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
            r  = (z*t1)/(t1-two)-(w+z*w);
            z  = one-(r-z);
            j  = __HI(z);
            j += (n<<20);
            if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
            else __HI(z) += (n<<20);
            return s*z;
    }
    
    0 讨论(0)
提交回复
热议问题