I was reading about the pros and cons of interpreted languages, and one of the most common cons is the slowness, but why are programs in interpreted languages slow?
From about.com:
An Interpreted language is processed at runtime. Every line is read, analysed, and executed. Having to reprocess a line every time in a loop is what makes interpreted languages so slow. This overhead means that interpreted code runs between 5 - 10 times slower than compiled code. The interpreted languages like Basic or JavaScript are the slowest. Their advantage is not needing to be recompiled after changes and that is handy when you're learning to program.
The 5-10 times slower is not necessarily true for languages like Java and C#, however. They are interpreted, but the just-in-time compilers can generate machine language instructions for some operations, speeding things up dramatically (near the speed of a compiled language at times).
There is no such thing as an interpreted language. Any language can be implemented by an interpreter or a compiler. These days most languages have implementations using a compiler.
That said, interpreters are usually slower, because they need process the language or something rather close to it at runtime and translate it to machine instructions. A compiler does this translation to machine instructions only once, after that they are executed directly.
Native programs runs using instructions written for the processor they run on.
Interpreted languages are just that, "interpreted". Some other form of instruction is read, and interpreted, by a runtime, which in turn executes native machine instructions.
Think of it this way. If you can talk in your native language to someone, that would generally work faster than having an interpreter having to translate your language into some other language for the listener to understand.
Note that what I am describing above is for when a language is running in an interpreter. There are interpreters for many languages that there is also native linkers for that build native machine instructions. The speed reduction (however the size of that might be) only applies to the interpreted context.
So, it is slightly incorrect to say that the language is slow, rather it is the context in which it is running that is slow.
C# is not an interpreted language, even though it employs an intermediate language (IL), this is JITted to native instructions before being executed, so it has some of the same speed reduction, but not all of it, but I'd bet that if you built a fully fledged interpreter for C# or C++, it would run slower as well.
And just to be clear, when I say "slow", that is of course a relative term.
Read this Pros And Cons Of Interpreted Languages
This is the relevant idea in that post to your problem.
An execution by an interpreter is usually much less efficient then regular program execution. It happens because either every instruction should pass an interpretation at runtime or as in newer implementations, the code has to be compiled to an intermediate representation before every execution.
A simple question, without any real simple answer. The bottom line is that all computers really "understand" is binary instructions, which is what "fast" languages like C are compiled into.
Then there are virtual machines, which understand different binary instructions (like Java and .NET) but those have to be translated on the fly to machine instructions by a Just-In-Compiler (JIT). That is almost as fast (even faster in some specific cases because the JIT has more information than a static compiler on how the code is being used.)
Then there are interpreted languages, which usually also have their own intermediate binary instructions, but the interpreter functions much like a loop with a large switch statement in it with a case for every instruction, and how to execute it. This level of abstraction over the underlying machine code is slow. There are more instructions involved, long chains of function calls in the interpreter to do even simple things, and it can be argued that the memory and cache aren't used as effectively as a result.
But interpreted languages are often fast enough for the purposes for which they're used. Web applications are invariably bound by IO (usually database access) which is an order of magnitude slower than any interpreter.
Loop a 100 times, the contents of the loop are interpreted 100 times into low level code.
Not cached, not reused, not optimised.
In simple terms, a compiler interprets once into low level code
Edit, after comments: