Using ggord
one can make nice linear discriminant analysis ggplot2
biplots (cf chapter 11, Fig 11.5 in \"Biplots in practice\" by M. Greenacre), as
Also just came up with the following easy solution: just make a column in df
where class predictions are made stochastically, according to the posterior probabilities, which then results in dithering in uncertain regions, e.g. as in
fit = lda(Species ~ Sepal.Length + Sepal.Width, data = iris, prior = rep(1, 3)/3)
ld1lim <- expand_range(c(min(datPred$LD1),max(datPred$LD1)),mul=0.5)
ld2lim <- expand_range(c(min(datPred$LD2),max(datPred$LD2)),mul=0.5)
rest as above, and inserting
lvls=unique(df$class)
df$classpprob=apply(df[,as.character(lvls)],1,function(row) sample(lvls,1,prob=row))
p=ggplot(datPred, aes(x=LD1, y=LD2) ) +
geom_raster(data=df, aes(x=x, y=y, fill = factor(classpprob)),hpad=0, vpad=0, alpha=0.7,show_guide=FALSE) +
geom_point(data = datPred, size = 3, aes(pch = Group, colour=Group)) +
scale_fill_manual(values=colorslight,guide=F) +
scale_x_continuous(limits=rngs[[1]], expand=c(0,0)) +
scale_y_continuous(limits=rngs[[2]], expand=c(0,0))
gives me
A lot easier and clearer than starting to mix colours in some additive or subtractive fashion anyway (which is the part where I still had trouble, and which apparently is not so trivial to do well).
I suppose the easiest way will be to show the posterior probabilities. It is pretty straightforward for your case:
datPred$maxProb <- apply(predict(fit)$posterior, 1, max)
ggplot(datPred, aes(x=LD1, y=LD2) ) +
geom_raster(data=df, aes(x=x, y=y, fill = factor(class)),alpha=0.7,show_guide=FALSE) +
geom_contour(data=df, aes(x=x, y=y, z=classnum), colour="red2", alpha=0.5, breaks=c(1.5,2.5)) +
geom_point(data = datPred, size = 3, aes(pch = Species, colour=Species, alpha = maxProb)) +
scale_x_continuous(limits = ld1lim, expand=c(0,0)) +
scale_y_continuous(limits = ld2lim, expand=c(0,0)) +
scale_fill_manual(values=colorslight, guide=F)
You can see the points blend in at blue-green border.