I have a data frame with a date column and some other value columns. I would like to extract from the data frame those rows in which the date column matches any of the eleme
Or you can go the other way round to what @RYogi suggested and convert the Date
into a string:
testdf[as.character(testdf$mydate) %in% c('2012-01-05', '2012-01-09'),]
mydate col1 col2 col3
5 2012-01-05 5 15 25
9 2012-01-09 9 19 29
Converting Date to a string is slightly faster, but it doesn't really make a difference:
library(rbenchmark)
benchmark(asDate=testdf[testdf$mydate %in% as.Date(c('2012-01-05', '2012-01-09')),],
asString=testdf[as.character(testdf$mydate) %in% c('2012-01-05', '2012-01-09'),],
replications=1000)
# test replications elapsed relative user.self sys.self user.child
# 1 asDate 1000 0.211 1.076531 0.212 0 0
# 2 asString 1000 0.196 1.000000 0.192 0 0
# sys.child
# 1 0
# 2 0
You have to convert the date string
into a Date
variable using as.Date
(try ?as.Date
at the console). Bonus: you can drop which:
> testdf[testdf$mydate %in% as.Date(c('2012-01-05', '2012-01-09')),]
mydate col1 col2 col3
5 2012-01-05 5 15 25
9 2012-01-09 9 19 29
Both suggestions so far are definitely good, but if you are going to be doing a lot of work with dates, you may want to invest some time with the xts
package:
# Some sample data for 90 consecutive days
set.seed(1)
testdf <- data.frame(mydate = seq(as.Date('2012-01-01'),
length.out=90, by = 'day'),
col1 = rnorm(90), col2 = rnorm(90),
col3 = rnorm(90))
# Convert the data to an xts object
require(xts)
testdfx = xts(testdf, order.by=testdf$mydate)
# Take a random sample of dates
testdfx[sample(index(testdfx), 5)]
# col1 col2 col3
# 2012-01-17 -0.01619026 0.71670748 1.44115771
# 2012-01-29 -0.47815006 0.49418833 -0.01339952
# 2012-02-05 -0.41499456 0.71266631 1.51974503
# 2012-02-27 -1.04413463 0.01739562 -1.18645864
# 2012-03-26 0.33295037 -0.03472603 0.27005490
# Get specific dates
testdfx[c('2012-01-05', '2012-01-09')]
# col1 col2 col3
# 2012-01-05 0.3295078 1.586833 0.5210227
# 2012-01-09 0.5757814 -1.224613 -0.4302118
You can also get dates from another vector.
# Get dates from another vector
lookup = c("2012-01-12", "2012-01-31", "2012-03-05", "2012-03-19")
testdfx[lookup]
testdfx[lookup]
# col1 col2 col3
# 2012-01-12 0.38984324 0.04211587 0.4020118
# 2012-01-31 1.35867955 -0.50595746 -0.1643758
# 2012-03-05 -0.74327321 -1.48746031 1.1629646
# 2012-03-19 0.07434132 -0.14439960 0.3747244
The xts
package will give you intelligent subsetting options. For instance, testdfx["2012-03"]
will return all the data from March; testdfx["2012"]
will return for the year; testdfx["/2012-02-15"]
will return the data from the start of the dataset to February 15; and testdfx["2012-02-15/"]
will go from February 15 to the end of the dataset.