Having the following generic class that would contain either string, int, float, long
as the type:
public class MyData
I think the issue that you're having is because you're trying to create a generic type, and then create a list of that generic type. You could accomplish what you're trying to do by contracting out the data types you're trying to support, say as an IData element, and then create your MyData generic with a constraint of IData. The downside to this would be that you would have to create your own data types to represent all the primitive data types you're using (string, int, float, long). It might look something like this:
public class MyData<T, C>
where T : IData<C>
{
public T Data { get; private set; }
public MyData (T value)
{
Data = value;
}
}
public interface IData<T>
{
T Data { get; set; }
void SomeMethod();
}
//you'll need one of these for each data type you wish to support
public class MyString: IData<string>
{
public MyString(String value)
{
Data = value;
}
public void SomeMethod()
{
//code here that uses _data...
Console.WriteLine(Data);
}
public string Data { get; set; }
}
and then you're implementation would be something like:
var myData = new MyData<MyString, string>(new MyString("new string"));
// Could be MyString, MyInt, ...
myData.Data.SomeMethod();
it's a little more work but you get the functionality you were going for.
UPDATE: remove SomeMethod from your interface and just do this
SomeMethod(myData.Data.Data);
Inherit MyData<T>
from a non-generic MyData
class and make a list of that.
This way, you can't automatically resolve the overload. You have to do it manually.
abstract class MyData {
protected abstract object GetData();
protected abstract Type GetDataType();
public object Data {
get { return GetData(); }
}
public Type DataType {
get { return GetDataType(); }
}
}
class MyData<T> : MyData {
protected override object GetData() { return Data; }
protected override Type GetDataType() { return typeof(T); }
public new T Data {
get { ... }
}
}
Delegates can really help simplify this, and still keep things type-safe:
public void TestMethod1()
{
Action<SomeClass, int> intInvoke = (o, data) => o.SomeMethod(data);
Action<SomeClass, string> stringInvoke = (o, data) => o.SomeMethod(data);
var list = new List<MyData>
{
new MyData<int> { Data = 10, OnTypedInvoke = intInvoke },
new MyData<string> { Data = "abc", OnTypedInvoke = stringInvoke }
};
var someClass = new SomeClass();
foreach (var item in list)
{
item.OnInvoke(someClass);
}
}
public abstract class MyData
{
public Action<SomeClass> OnInvoke;
}
public class MyData<T> : MyData
{
public T Data { get; set; }
public Action<SomeClass, T> OnTypedInvoke
{ set { OnInvoke = (o) => { value(o, Data); }; } }
}
public class SomeClass
{
public void SomeMethod(string data)
{
Console.WriteLine("string: {0}", data);
}
public void SomeMethod(int data)
{
Console.WriteLine("int: {0}", data);
}
}
In that case you need MyData<object>
since that is the only thing those types have in common.
Generics allow you to specify one type for the whole list when you create the list, for example a list for storing int would be created like this
var myData = new MyData<int>();
If you want to store multiple types in the same generic list you can specify a common base type or interface for those types. Unfortunately in your case the only common base type for the types you want to store would be object.
var myData = new MyData<object>();
But you can just use the non-generic list for storing objects.
Suggested wildcards a while back here. Closed as "won't fix" :(