How to improve performance of this numerical computation in Haskell?

前端 未结 2 858
时光取名叫无心
时光取名叫无心 2020-12-23 16:25

I\'m in the middle of porting David Blei\'s original C implementation of Latent Dirichlet Allocation to Haskell, and I\'m trying to decide whether to leave some of the low-l

相关标签:
2条回答
  • 2020-12-23 16:51

    Use the same control and data structures, yielding:

    {-# LANGUAGE BangPatterns #-}
    {-# OPTIONS_GHC -fvia-C -optc-O3 -fexcess-precision -optc-march=native #-}
    
    {-# INLINE trigamma #-}
    trigamma :: Double -> Double
    trigamma x = go 0 (x' - 1) p'
        where
            x' = x + 6
            p  = 1 / (x' * x')
    
            p' =(((((0.075757575757576*p-0.033333333333333)*p+0.0238095238095238)
                      *p-0.033333333333333)*p+0.166666666666667)*p+1)/x'+0.5*p
    
            go :: Int -> Double -> Double -> Double
            go !i !x !p
                | i >= 6    = p
                | otherwise = go (i+1) (x-1) (1 / (x*x) + p)
    

    I don't have your testsuite, but this yields the following asm:

    A_zdwgo_info:
            cmpq    $5, %r14
            jg      .L3
            movsd   .LC0(%rip), %xmm7
            movapd  %xmm5, %xmm8
            movapd  %xmm7, %xmm9
            mulsd   %xmm5, %xmm8
            leaq    1(%r14), %r14
            divsd   %xmm8, %xmm9
            subsd   %xmm7, %xmm5
            addsd   %xmm9, %xmm6
            jmp     A_zdwgo_info
    

    Which looks ok. This is the kind of code the -fllvm backend does a good job.

    GCC unrolls the loop though, and the only way to do that is either via Template Haskell or manual unrolling. You might consider that (a TH macro) if doing a lot of this.

    Actually, the GHC LLVM backend does unroll the loop :-)

    Finally, if you really like the original Haskell version, write it using stream fusion combinators, and GHC will convert it back into loops. (Exercise for the reader).

    0 讨论(0)
  • 2020-12-23 17:06

    Before the optimization work, I wouldn't say that your original translation is the most idiomatic way to express in Haskell what the C code is doing.

    How would the optimization process have proceeded if we started with the following instead:

    trigamma :: Double -> Double
    trigamma x = foldl' (+) p' . map invSq . take 6 . iterate (+ 1) $ x
    where
      invSq y = 1 / (y * y)
      x' = x + 6
      p  = invSq x'
      p' =(((((0.075757575757576*p-0.033333333333333)*p+0.0238095238095238)
                  *p-0.033333333333333)*p+0.166666666666667)*p+1)/x'+0.5*p
    
    0 讨论(0)
提交回复
热议问题