Given an n
by n
matrix M
, at row i
and column j
, I\'d like to iterate over all the neighboring values in a c
Since it was mentioned that the order of the points do not matter, I've simply ordered them by the angle (arctan2
) in which they appear at a given radius. Change N
to get more points.
from numpy import *
N = 8
# Find the unique distances
X,Y = meshgrid(arange(N),arange(N))
G = sqrt(X**2+Y**2)
U = unique(G)
# Identify these coordinates
blocks = [[pair for pair in zip(*where(G==idx))] for idx in U if idx<N/2]
# Permute along the different orthogonal directions
directions = array([[1,1],[-1,1],[1,-1],[-1,-1]])
all_R = []
for b in blocks:
R = set()
for item in b:
for x in item*directions:
R.add(tuple(x))
R = array(list(R))
# Sort by angle
T = array([arctan2(*x) for x in R])
R = R[argsort(T)]
all_R.append(R)
# Display the output
from pylab import *
colors = ['r','k','b','y','g']*10
for c,R in zip(colors,all_R):
X,Y = map(list,zip(*R))
# Connect last point
X = X + [X[0],]
Y = Y + [Y[0],]
scatter(X,Y,c=c,s=150)
plot(X,Y,color=c)
axis('equal')
show()
Gives for N=8
:
More points N=16
(sorry for the colorblind):
This clearly approaches a circle and hits every grid point in order of increasing radius.