Consider this trigger:
ALTER TRIGGER myTrigger
ON someTable
AFTER INSERT
AS BEGIN
DELETE FROM someTable
WHERE ISNUMERIC(someField) = 1
END
Your "trigger" is doing something that a "trigger" is not suppose to be doing. You can simple have your Sql Server Agent run
DELETE FROM someTable
WHERE ISNUMERIC(someField) = 1
every 1 second or so. While you're at it, how about writing a nice little SP to stop the programming folk from inserting errors into your table. One good thing about SP's is that the parameters are type safe.
I found this reference:
create trigger myTrigger
on SomeTable
for insert
as
if (select count(*)
from SomeTable, inserted
where IsNumeric(SomeField) = 1) <> 0
/* Cancel the insert and print a message.*/
begin
rollback transaction
print "You can't do that!"
end
/* Otherwise, allow it. */
else
print "Added successfully."
I haven't tested it, but logically it looks like it should dp what you're after...rather than deleting the inserted data, prevent the insertion completely, thus not requiring you to have to undo the insert. It should perform better and should therefore ultimately handle a higher load with more ease.
Edit: Of course, there is the potential that if the insert happened inside of an otherwise valid transaction that the wole transaction could be rolled back so you would need to take that scenario into account and determine if the insertion of an invalid data row would constitute a completely invalid transaction...
I stumbled across this question looking for details on the sequence of events during an insert statement & trigger. I ended up coding some brief tests to confirm how SQL 2016 (EXPRESS) behaves - and thought it would be appropriate to share as it might help others searching for similar information.
Based on my test, it is possible to select data from the "inserted" table and use that to update the inserted data itself. And, of interest to me, the inserted data is not visible to other queries until the trigger completes at which point the final result is visible (at least best as I could test). I didn't test this for recursive triggers, etc. (I would expect the nested trigger would have full visibility of the inserted data in the table, but that's just a guess).
For example - assuming we have the table "table" with an integer field "field" and primary key field "pk" and the following code in our insert trigger:
select @value=field,@pk=pk from inserted
update table set field=@value+1 where pk=@pk
waitfor delay '00:00:15'
We insert a row with the value 1 for "field", then the row will end up with the value 2. Furthermore - if I open another window in SSMS and try: select * from table where pk = @pk
where @pk is the primary key I originally inserted, the query will be empty until the 15 seconds expire and will then show the updated value (field=2).
I was interested in what data is visible to other queries while the trigger is executing (apparently no new data). I tested with an added delete as well:
select @value=field,@pk=pk from inserted
update table set field=@value+1 where pk=@pk
delete from table where pk=@pk
waitfor delay '00:00:15'
Again, the insert took 15sec to execute. A query executing in a different session showed no new data - during or after execution of the insert + trigger (although I would expect any identity would increment even if no data appears to be inserted).
I think you can use CHECK constraint - it is exactly what it was invented for.
ALTER TABLE someTable
ADD CONSTRAINT someField_check CHECK (ISNUMERIC(someField) = 1) ;
My previous answer (also right by may be a bit overkill):
I think the right way is to use INSTEAD OF trigger to prevent the wrong data from being inserted (rather than deleting it post-factum)
Triggers cannot modify the changed data (Inserted
or Deleted
) otherwise you could get infinite recursion as the changes invoked the trigger again. One option would be for the trigger to roll back the transaction.
Edit: The reason for this is that the standard for SQL is that inserted and deleted rows cannot be modified by the trigger. The underlying reason for is that the modifications could cause infinite recursion. In the general case, this evaluation could involve multiple triggers in a mutually recursive cascade. Having a system intelligently decide whether to allow such updates is computationally intractable, essentially a variation on the halting problem.
The accepted solution to this is not to permit the trigger to alter the changing data, although it can roll back the transaction.
create table Foo (
FooID int
,SomeField varchar (10)
)
go
create trigger FooInsert
on Foo after insert as
begin
delete inserted
where isnumeric (SomeField) = 1
end
go
Msg 286, Level 16, State 1, Procedure FooInsert, Line 5
The logical tables INSERTED and DELETED cannot be updated.
Something like this will roll back the transaction.
create table Foo (
FooID int
,SomeField varchar (10)
)
go
create trigger FooInsert
on Foo for insert as
if exists (
select 1
from inserted
where isnumeric (SomeField) = 1) begin
rollback transaction
end
go
insert Foo values (1, '1')
Msg 3609, Level 16, State 1, Line 1
The transaction ended in the trigger. The batch has been aborted.
From the CREATE TRIGGER documentation:
deleted and inserted are logical (conceptual) tables. They are structurally similar to the table on which the trigger is defined, that is, the table on which the user action is attempted, and hold the old values or new values of the rows that may be changed by the user action. For example, to retrieve all values in the deleted table, use:
SELECT * FROM deleted
So that at least gives you a way of seeing the new data.
I can't see anything in the docs which specifies that you won't see the inserted data when querying the normal table though...