I understand that OHLC re-sampling of time series data in Pandas, using one column of data, will work perfectly, for example on the following dataframe:
>
Converstion from OHLC to OHLC for me worked like this:
df.resample('1H').agg({
'openbid':'first',
'highbid':'max',
'lowbid':'min',
'closebid':'last'
})
Given a dataframe with price and amount columns
def agg_ohlcv(x):
arr = x['price'].values
names = {
'low': min(arr) if len(arr) > 0 else np.nan,
'high': max(arr) if len(arr) > 0 else np.nan,
'open': arr[0] if len(arr) > 0 else np.nan,
'close': arr[-1] if len(arr) > 0 else np.nan,
'volume': sum(x['amount'].values) if len(x['amount'].values) > 0 else 0,
}
return pd.Series(names)
df = df.resample('1min').apply(agg_ohlcv)
df = df.ffill()
You need to use an OrderedDict to keep row order in the newer versions of pandas, like so:
import pandas as pd
from collections import OrderedDict
df['ctime'] = pd.to_datetime(df['ctime'], unit='s')
df = df.set_index('ctime')
df = df.resample('5Min').agg(
OrderedDict([
('open', 'first'),
('high', 'max'),
('low', 'min'),
('close', 'last'),
('volume', 'sum'),
])
)
This is similar to the answer you linked, but it a little cleaner, and faster, because it uses the optimized aggregations, rather than lambdas.
Note that the resample(...).agg(...)
syntax requires pandas version 0.18.0
.
In [101]: df.resample('1H').agg({'openbid': 'first',
'highbid': 'max',
'lowbid': 'min',
'closebid': 'last'})
Out[101]:
lowbid highbid closebid openbid
ctime
2015-09-30 23:00:00 1.11687 1.11712 1.11708 1.117
This one seems to work,
def ohlcVolume(x):
if len(x):
ohlc={ "open":x["open"][0],"high":max(x["high"]),"low":min(x["low"]),"close":x["close"][-1],"volume":sum(x["volume"])}
return pd.Series(ohlc)
daily=df.resample('1D').apply(ohlcVolume)