I would like to know how to do this operation simpler.
Imagine I have a data.frame like this one:
set.seed(1)
ID <- rep(1:3,each=4)
XX <- round(run
I think you will need to use lapply()
across the relevant columns, as ave()
will not take a list in its first argument. Try this:
df[-1] <- lapply(
df[-1],
function(x) ave(x, df$ID, FUN = function(x) c(x[1], diff(x)))
)
which gives the updated df
ID XX ZZ 1 1 0.266 0.266 2 1 0.106 0.744 3 1 0.201 1.719 4 1 0.335 3.632 5 2 0.202 0.202 6 2 0.696 1.796 7 2 0.047 2.835 8 2 -0.284 2.644 9 3 0.629 0.629 10 3 -0.567 0.124 11 3 0.144 0.618 12 3 -0.029 0.708
Data:
df <- structure(list(ID = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L,
3L, 3L), XX = c(0.266, 0.372, 0.573, 0.908, 0.202, 0.898, 0.945,
0.661, 0.629, 0.062, 0.206, 0.177), ZZ = c(0.266, 1.01, 2.729,
6.361, 0.202, 1.998, 4.833, 7.477, 0.629, 0.753, 1.371, 2.079
)), .Names = c("ID", "XX", "ZZ"), class = "data.frame", row.names = c(NA,
-12L))
Here is a simple way to do it in a data.table
set.seed(1)
ID <- rep(1:3, each=4)
XX <- round(runif(12), 3)
##ZZ <- ave(XX*TT,ID, FUN = cumsum) #we don't have TT
DF <- data.table(ID, XX)
DF[,XX_dif:=XX-c(0,head(XX,length(XX)-1)),by=ID]
# or alternatively using shift()
# DF[, XX_dif := XX-shift(XX, fill=0L), by=ID]
ID XX XX_dif
1: 1 0.266 0.266
2: 1 0.372 0.106
3: 1 0.573 0.201
4: 1 0.908 0.335
5: 2 0.202 0.202
6: 2 0.898 0.696
7: 2 0.945 0.047
8: 2 0.661 -0.284
9: 3 0.629 0.629
10: 3 0.062 -0.567
11: 3 0.206 0.144
12: 3 0.177 -0.029
Here is an option using dplyr
library(dplyr)
DF %>%
group_by(ID) %>%
mutate(ZZ = c(ZZ[1], diff(ZZ)))
# ID XX ZZ
# <int> <dbl> <dbl>
#1 1 0.266 0.266
#2 1 0.372 0.744
#3 1 0.573 1.719
#4 1 0.908 3.632
#5 2 0.202 0.202
#6 2 0.898 1.796
#7 2 0.945 2.835
#8 2 0.661 2.644
#9 3 0.629 0.629
#10 3 0.062 0.124
#11 3 0.206 0.618
#12 3 0.177 0.708