my code is:-
#include
#include
#define sq(x) x*x*x
void main()
{
printf(\"Cube is : %d.\",sq(6+5));
getch();
}
You need parentheses around the argument.
#define sq(x) ((x)*(x)*(x))
Without the parentheses, the expression will expand to:
6+5*6+5*6+5
Which you can see why it would evaluate to 71
.
A safer solution would be to use an inline function instead. But, you would need to define a different one for each type. It might also be more clear to rename the macro.
static inline int cube_int (int x) { return x*x*x; }
Always shield your macro arguments with parenthesis:
#define sq(x) ((x) * (x) * (x))
Consider the evaluation without the parenthesis:
6 + 5 * 6 + 5 * 6 + 5
And recall that *
has a higher precedence than +
, so this is:
6 + 30 + 30 + 5 = 71;
Get to know the precedence rules if you don't already: http://en.cppreference.com/w/cpp/language/operator_precedence
If you define the macro like this:
#define sq(x) x*x*x
And call it:
sq(6+5);
The pre-processor will generate this code:
6+5*6+5*6+5
Which is, due to operator precedence, equivalent to:
6+(5*6)+(5*6)+5
That's why, the macro arguments must be parenthesized:
#define sq(x) (x)*(x)*(x)
So that pre-processor output becomes:
(6+5)*(6+5)*(6+5)
However, if you pass some arguments with side-effects such as (i++):
sq(i++)
It will be expanded to:
(i++)*(i++)*(i++)
So, be careful, perhaps you need a function