Obtain standard errors of regression coefficients for an “mlm” object returned by `lm()`

后端 未结 3 1100
执笔经年
执笔经年 2020-12-21 05:08

I\'d like to run 10 regressions against the same regressor, then pull all the standard errors without using a loop.

depVars <- as.matrix(         


        
相关标签:
3条回答
  • 2020-12-21 05:24

    If you put your data in long format it's very easy to get a bunch of regression results using lmList from the nlme or lme4 packages. The output is a list of regression results and the summary can give you a matrix of coefficients, just like you wanted.

    library(lme4)
    
    m <- lmList( y ~ x | group, data = dat)
    summary(m)$coefficients
    

    Those coefficients are in a simple 3 dimensional array so the standard errors are at [,2,2].

    0 讨论(0)
  • 2020-12-21 05:34

    Given an "mlm" model object model, you can use the below function written by me to get standard errors of coefficients. This is very efficient: no loop, and no access to summary.mlm().

    std_mlm <- function (model) {
      Rinv <- with(model$qr, backsolve(qr, diag(rank)))
      ## unscaled standard error
      std_unscaled <- sqrt(rowSums(Rinv ^ 2)[order(model$qr$pivot)])
      ## residual standard error
      sigma <- sqrt(colSums(model$residuals ^ 2) / model$df.residual)
      ## return final standard error
      ## each column corresponds to a model
      "dimnames<-"(outer(std_unscaled, sigma), list = dimnames(model$coefficients))
      }
    

    A simple, reproducible example

    set.seed(0)
    Y <- matrix(rnorm(50 * 5), 50)    ## assume there are 5 responses
    X <- rnorm(50)    ## covariate
    
    fit <- lm(Y ~ X)
    

    We all know that it is simple to extract estimated coefficients via:

    fit$coefficients    ## or `coef(fit)`
    #                   [,1]       [,2]        [,3]        [,4]        [,5]
    #(Intercept) -0.21013925  0.1162145  0.04470235  0.08785647  0.02146662
    #X            0.04110489 -0.1954611 -0.07979964 -0.02325163 -0.17854525
    

    Now let's apply our std_mlm:

    std_mlm(fit)
    #                 [,1]      [,2]      [,3]      [,4]      [,5]
    #(Intercept) 0.1297150 0.1400600 0.1558927 0.1456127 0.1186233
    #X           0.1259283 0.1359712 0.1513418 0.1413618 0.1151603
    

    We can of course, call summary.mlm just to check our result is correct:

    coef(summary(fit))
    #Response Y1 :
    #               Estimate Std. Error    t value  Pr(>|t|)
    #(Intercept) -0.21013925  0.1297150 -1.6200072 0.1117830
    #X            0.04110489  0.1259283  0.3264151 0.7455293
    #
    #Response Y2 :
    #              Estimate Std. Error    t value  Pr(>|t|)
    #(Intercept)  0.1162145  0.1400600  0.8297485 0.4107887
    #X           -0.1954611  0.1359712 -1.4375183 0.1570583
    #
    #Response Y3 :
    #               Estimate Std. Error    t value  Pr(>|t|)
    #(Intercept)  0.04470235  0.1558927  0.2867508 0.7755373
    #X           -0.07979964  0.1513418 -0.5272811 0.6004272
    #
    #Response Y4 :
    #               Estimate Std. Error    t value  Pr(>|t|)
    #(Intercept)  0.08785647  0.1456127  0.6033574 0.5491116
    #X           -0.02325163  0.1413618 -0.1644831 0.8700415
    #
    #Response Y5 :
    #               Estimate Std. Error    t value  Pr(>|t|)
    #(Intercept)  0.02146662  0.1186233  0.1809646 0.8571573
    #X           -0.17854525  0.1151603 -1.5504057 0.1276132
    

    Yes, all correct!

    0 讨论(0)
  • 2020-12-21 05:35

    Here an option:

    1. put your data in the long format using regressor as an id key.
    2. do your regression against value by group of variable.

    For example , using mtcars data set:

    library(reshape2)
    dat.m <- melt(mtcars,id.vars='mpg')  ## mpg is my regressor
    library(plyr)
    ddply(dat.m,.(variable),function(x)coef(lm(variable~value,data=x)))
      variable (Intercept)         value
    1       cyl           1  8.336774e-18
    2      disp           1  6.529223e-19
    3        hp           1  1.106781e-18
    4      drat           1 -1.505237e-16
    5        wt           1  8.846955e-17
    6      qsec           1  6.167713e-17
    7        vs           1  2.442366e-16
    8        am           1 -3.381738e-16
    9      gear           1 -8.141220e-17
    10     carb           1 -6.455094e-17
    
    0 讨论(0)
提交回复
热议问题