I\'m writing a CUDA kernel that is compiled at runtime using NVRTC (CUDA version 9.2 with NVRTC version 7.5), which needs the stdint.h
header, in order to have
[Preface: this is a very hacky answer, and is specific to the GNU toolchain (although I suspect the problem in the question is also specific to the GNU toolchain)].
It would appear that the problem here is with the GNU standard header features.h
which gets pulled into stdint.h
and which winds up defining a lot of stub functions which have the default __host__
compilation space and cause nvrtc to blow up. It also seems that the -default-device
option will result in a resolved glibC compiler feature set which makes the whole nvrtc compiler fail.
You can defeat this (in a very hacky way) by predefining a feature set for the standard library which excludes all the host functions. Changing your JIT kernel code to
const char program_source[] = R"%%%(
#define __ASSEMBLER__
#define __extension__
#include <stdint.h>
extern "C" __global__ void f(int32_t* in, int32_t* out) {
out[threadIdx.x] = in[threadIdx.x];
}
)%%%";
got me this:
$ nvcc -std=c++14 -ccbin=g++-7 jit_header.cu -o jitheader -lnvrtc -lcuda
$ ./jitheader
PTX code:
//
// Generated by NVIDIA NVVM Compiler
//
// Compiler Build ID: CL-24330188
// Cuda compilation tools, release 9.2, V9.2.148
// Based on LLVM 3.4svn
//
.version 6.2
.target sm_30
.address_size 64
// .globl f
.visible .entry f(
.param .u64 f_param_0,
.param .u64 f_param_1
)
{
.reg .b32 %r<3>;
.reg .b64 %rd<8>;
ld.param.u64 %rd1, [f_param_0];
ld.param.u64 %rd2, [f_param_1];
cvta.to.global.u64 %rd3, %rd2;
cvta.to.global.u64 %rd4, %rd1;
mov.u32 %r1, %tid.x;
mul.wide.u32 %rd5, %r1, 4;
add.s64 %rd6, %rd4, %rd5;
ld.global.u32 %r2, [%rd6];
add.s64 %rd7, %rd3, %rd5;
st.global.u32 [%rd7], %r2;
ret;
}
Big caveat: This worked on the glibC system I tried it on. It probably won't work with other toolchains or libC implementations (if, indeed, they have this problem).