I am trying to get the mean age of males and females with various health conditions from my data frame.
AgeAnalyisi$Age num
AgeAnalyisi$Gout logic
Here is a data.table solution
library(data.table)
AgeAnalyisis.DT <- data.table(AgeAnalyisis)
AgeAnalyisis.DT[, lapply(.SD[, !"Age", with=FALSE], function(x) mean(Age[x]))
, by=Gender]
Gender Gout Arthritis Vasculitis
1: F 54.58333 52.00000 55.81818
2: M 50.09091 52.69231 52.40000
If you'd like it transposed, you can use:
# Save the results
res <- AgeAnalyisis.DT[, lapply(.SD[, !"Age", with=FALSE], function(x) mean(Age[x]))
, by=Gender]
# Transpose, and assign Gender as column names
results <- t(res[,!"Gender", with=FALSE])
colnames(results) <- res[, Gender]
results
# F M
# Gout 58.30263 57.50328
# Arthritis 66.00217 67.91978
# Vasculitis 59.76155 57.86556
You could try the aggregate
function:
df <- data.frame(value=1:10, letter=rep(LETTERS[1:2], each=5), group=rep(c(1,2), times=5))
aggregate(value ~ letter * group, data=df, FUN=mean)
# letter group value
#1 A 1 3
#2 B 1 8
#3 A 2 3
#4 B 2 8