Following up on this question and for the sake of completeness, I modified the accepted answer and customized the resulting plot, but I am still facing some important proble
You can try following. As your code is really busy and for me too complicated to understand, I suggest a different approach. I tried to avoid loops and to use the tidyverse
as much as possible. Thus, first I created your data. Then calculated kruskal wallis tests as this was not possible within ggsignif
. Afterwards I will plot all p.values using geom_signif
. Finally, insignificant ones will be removed and a step increase is added.
1- Make coloring work done
2- Show asterisks instead of numbers done
...and for the win:
3- Make a common legend done
4- Place Kruskal-Wallis line on top done, I placed the values at the bottom
5- Change the size (and alignment) of the title and y axis text done
library(tidyverse)
library(ggsignif)
# 1. your data
set.seed(2)
df <- as.tbl(iris) %>%
mutate(treatment=rep(c("A","B"), length(iris$Species)/2)) %>%
gather(key, value, -Species, -treatment) %>%
mutate(value=rnorm(n())) %>%
mutate(key=factor(key, levels=unique(key))) %>%
mutate(both=interaction(treatment, key, sep = " "))
# 2. Kruskal test
KW <- df %>%
group_by(Species) %>%
summarise(p=round(kruskal.test(value ~ both)$p.value,2),
y=min(value),
x=1) %>%
mutate(y=min(y))
# 3. Plot
P <- df %>%
ggplot(aes(x=both, y=value)) +
geom_boxplot(aes(fill=Species)) +
facet_grid(~Species) +
ylim(-3,7)+
theme(axis.text.x = element_text(angle=45, hjust=1)) +
geom_signif(comparisons = combn(levels(df$both),2,simplify = F),
map_signif_level = T) +
stat_summary(fun.y=mean, geom="point", shape=5, size=4) +
xlab("") +
geom_text(data=KW,aes(x, y=y, label=paste0("KW p=",p)),hjust=0) +
ggtitle("Plot") + ylab("This is my own y-lab")
# 4. remove not significant values and add step increase
P_new <- ggplot_build(P)
P_new$data[[2]] <- P_new$data[[2]] %>%
filter(annotation != "NS.") %>%
group_by(PANEL) %>%
mutate(index=(as.numeric(group[drop=T])-1)*0.5) %>%
mutate(y=y+index,
yend=yend+index) %>%
select(-index) %>%
as.data.frame()
# the final plot
plot(ggplot_gtable(P_new))
and similar approach using two facets
# --------------------
# 5. Kruskal
KW <- df %>%
group_by(Species, treatment) %>%
summarise(p=round(kruskal.test(value ~ both)$p.value,2),
y=min(value),
x=1) %>%
ungroup() %>%
mutate(y=min(y))
# 6. Plot with two facets
P <- df %>%
ggplot(aes(x=key, y=value)) +
geom_boxplot(aes(fill=Species)) +
facet_grid(treatment~Species) +
ylim(-5,7)+
theme(axis.text.x = element_text(angle=45, hjust=1)) +
geom_signif(comparisons = combn(levels(df$key),2,simplify = F),
map_signif_level = T) +
stat_summary(fun.y=mean, geom="point", shape=5, size=4) +
xlab("") +
geom_text(data=KW,aes(x, y=y, label=paste0("KW p=",p)),hjust=0) +
ggtitle("Plot") + ylab("This is my own y-lab")
# 7. remove not significant values and add step increase
P_new <- ggplot_build(P)
P_new$data[[2]] <- P_new$data[[2]] %>%
filter(annotation != "NS.") %>%
group_by(PANEL) %>%
mutate(index=(as.numeric(group[drop=T])-1)*0.5) %>%
mutate(y=y+index,
yend=yend+index) %>%
select(-index) %>%
as.data.frame()
# the final plot
plot(ggplot_gtable(P_new))
Edit.
Regarding to your p.adjust
needs, you can set up a function on your own and calling it directly within geom_signif()
.
wilcox.test.BH.adjusted <- function(x,y,n){
tmp <- wilcox.test(x,y)
tmp$p.value <- p.adjust(tmp$p.value, n = n,method = "BH")
tmp
}
geom_signif(comparisons = combn(levels(df$both),2,simplify = F),
map_signif_level = T, test = "wilcox.test.BH.adjusted",
test.args = list(n=8))
The challenge is to know how many independet tests you will have in the end. Then you can set the n
by your own. Here I used 8
. But this is maybe wrong.
Constructing ggplots in a loop has always been known to produce confusing results, and for the explanation of point 1 I'll refer to this question and many others. There's also a hint there about evaluating the ggplot object on the spot, e.g. via print
.
Re point 2, you were close, a bit of debugging with trial and error helped. Here's the complete code for plot.list
:
plot.list=function(mydf, pv.final, addkw, a, myPal){
mylist <- list()
i <- 0
for (sp in unique(mydf$Species)){
i <- i+1
mydf0 <- subset(mydf, Species==sp)
addkw0 <- subset(addkw, Species==sp)
pv.final0 <- pv.final[grep(sp, pv.final$group1), ]
num.signif <- sum(pv.final0$p.value <= 0.05)
P <- ggplot(mydf0,aes(x=both, y=value)) +
geom_boxplot(aes(fill=Species)) +
stat_summary(fun.y=mean, geom="point", shape=5, size=4) +
facet_grid(~Species, scales="free", space="free_x") +
scale_fill_manual(values=myPal[i]) +
geom_text(data=addkw0, hjust=0, size=4.5, aes(x=0, y=round(max(mydf0$value, na.rm=TRUE)+0.5), label=paste0("KW p=",p.value))) +
geom_signif(test="wilcox.test", comparisons = a[which(pv.final0$p.value<=0.05)],#I can use "a"here
map_signif_level = F,
vjust=0,
textsize=4,
size=0.5,
step_increase = 0.05)
if (i==1){
P <- P + theme(legend.position="none",
axis.text.x=element_text(size=20, angle=90, hjust=1),
axis.text.y=element_text(size=20),
axis.title=element_blank(),
strip.text.x=element_text(size=20,face="bold"),
strip.text.y=element_text(size=20,face="bold"))
} else{
P <- P + theme(legend.position="none",
axis.text.x=element_text(size=20, angle=90, hjust=1),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
axis.title=element_blank(),
strip.text.x=element_text(size=20,face="bold"),
strip.text.y=element_text(size=20,face="bold"))
}
P2 <- ggplot_build(P)
P2$data[[4]]$annotation <- rep(subset(pv.final0, p.value<=0.05)$map.signif, each=3)
P <- ggplot_gtable(P2)
mylist[[sp]] <- list(num.signif, P)
}
return(mylist)
}
Note that we can no longer modify the plot via ggplot semantics, since we already applied ggplot_build
/ggplot_gtable
, so scale modification is no longer possible. If you want to preserve it, move it inside the plot.list
function. So, changing to
grid.arrange(grobs=lapply(p.list, function(x) x[[2]]),
ncol=length(unique(mydf$Species)), top="Random title", left="Value")
yields
That's not a complete solution, of course, but I hope that helps.