So I am looking at this question and the general consensus is that uint cast version is more efficient than range check with 0. Since the code is also in MS\'s implementatio
if (x < 0 || x > MaxSize)
The comparison is performed by the CMP processor instruction (Compare). You'll want to take a look at Agner Fog's instruction tables document (PDF), it list the cost of instructions. Find your processor back in the list, then locate the CMP instruction.
For mine, Haswell, CMP takes 1 cycle of latency and 0.25 cycles of throughput.
A fractional cost like that could use an explanation, Haswell has 4 integer execution units that can execute instructions at the same time. When a program contains enough integer operations, like CMP, without an interdependency then they can all execute at the same time. In effect making the program 4 times faster. You don't always manage to keep all 4 of them busy at the same time with your code, it is actually pretty rare. But you do keep 2 of them busy in this case. Or in other words, two comparisons take just as long as single one, 1 cycle.
There are other factors at play that make the execution time identical. One thing helps is that the processor can predict the branch very well, it can speculatively execute x > MaxSize
in spite of the short-circuit evaluation. And it will in fact end up using the result since the branch is never taken.
And the true bottleneck in this code is the array indexing, accessing memory is one of the slowest thing the processor can do. So the "fast" version of the code isn't faster even though it provides more opportunity to allow the processor to concurrently execute instructions. It isn't much of an opportunity today anyway, a processor has too many execution units to keep busy. Otherwise the feature that makes HyperThreading work. In both cases the processor bogs down at the same rate.
On my machine, I have to write code that occupies more than 4 engines to make it slower. Silly code like this:
if (x < 0 || x > MaxSize || x > 10000000 || x > 20000000 || x > 3000000) {
outOfRange++;
}
else {
inRange++;
}
Using 5 compares, now I can a difference, 61 vs 47 msec. Or in other words, this is a way to count the number of integer engines in the processor. Hehe :)
So this is a micro-optimization that probably used to pay off a decade ago. It doesn't anymore. Scratch it off your list of things to worry about :)
You aren't comparing like with like.
The code you were talking about not only saved one branch by using the optimisation, but also 4 bytes of CIL in a small method.
In a small method 4 bytes can be the difference in being inlined and not being inlined.
And if the method calling that method is also written to be small, then that can mean two (or more) method calls are jitted as one piece of inline code.
And maybe some of it is then, because it is inline and available for analysis by the jitter, optimised further again.
The real difference is not between index < 0 || index >= _size
and (uint)index >= (uint)_size
, but between code that has repeated efforts to minimise the method body size and code that does not. Look for example at how another method is used to throw the exception if necessary, further shaving off a couple of bytes of CIL.
(And no, that's not to say that I think all methods should be written like that, but there certainly can be performance differences when one does).
I would suggest attempting code which does not throw an exception when the index
is out of range. Exceptions are incredibly expensive and can completely throw off your bench results.
The code below does a timed-average bench for 1,000 iterations of 1,000,000 results.
using System;
using System.Diagnostics;
namespace BenchTest
{
class Program
{
const int LoopCount = 1000000;
const int AverageCount = 1000;
static void Main(string[] args)
{
Console.WriteLine("Starting Benchmark");
RunTest();
Console.WriteLine("Finished Benchmark");
Console.Write("Press any key to exit...");
Console.ReadKey();
}
static void RunTest()
{
int cursorRow = Console.CursorTop; int cursorCol = Console.CursorLeft;
long totalTime1 = 0; long totalTime2 = 0;
long invalidOperationCount1 = 0; long invalidOperationCount2 = 0;
for (int i = 0; i < AverageCount; i++)
{
Console.SetCursorPosition(cursorCol, cursorRow);
Console.WriteLine("Running iteration: {0}/{1}", i + 1, AverageCount);
int[] indexArgs = RandomFill(LoopCount, int.MinValue, int.MaxValue);
int[] sizeArgs = RandomFill(LoopCount, 0, int.MaxValue);
totalTime1 += RunLoop(TestMethod1, indexArgs, sizeArgs, ref invalidOperationCount1);
totalTime2 += RunLoop(TestMethod2, indexArgs, sizeArgs, ref invalidOperationCount2);
}
PrintResult("Test 1", TimeSpan.FromTicks(totalTime1 / AverageCount), invalidOperationCount1);
PrintResult("Test 2", TimeSpan.FromTicks(totalTime2 / AverageCount), invalidOperationCount2);
}
static void PrintResult(string testName, TimeSpan averageTime, long invalidOperationCount)
{
Console.WriteLine(testName);
Console.WriteLine(" Average Time: {0}", averageTime);
Console.WriteLine(" Invalid Operations: {0} ({1})", invalidOperationCount, (invalidOperationCount / (double)(AverageCount * LoopCount)).ToString("P3"));
}
static long RunLoop(Func<int, int, int> testMethod, int[] indexArgs, int[] sizeArgs, ref long invalidOperationCount)
{
Stopwatch sw = new Stopwatch();
Console.Write("Running {0} sub-iterations", LoopCount);
sw.Start();
long startTickCount = sw.ElapsedTicks;
for (int i = 0; i < LoopCount; i++)
{
invalidOperationCount += testMethod(indexArgs[i], sizeArgs[i]);
}
sw.Stop();
long stopTickCount = sw.ElapsedTicks;
long elapsedTickCount = stopTickCount - startTickCount;
Console.WriteLine(" - Time Taken: {0}", new TimeSpan(elapsedTickCount));
return elapsedTickCount;
}
static int[] RandomFill(int size, int minValue, int maxValue)
{
int[] randomArray = new int[size];
Random rng = new Random();
for (int i = 0; i < size; i++)
{
randomArray[i] = rng.Next(minValue, maxValue);
}
return randomArray;
}
static int TestMethod1(int index, int size)
{
return (index < 0 || index >= size) ? 1 : 0;
}
static int TestMethod2(int index, int size)
{
return ((uint)(index) >= (uint)(size)) ? 1 : 0;
}
}
}