The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143 ?
Ok, so i am working on projec
Here is my python code
a=2
list1=[]
while a<=13195: #replace 13195 with your input number
if 13195 %a ==0: #replace 13195 with your input number
x , count = 2, 0
while x <=a:
if a%x ==0:
count+=1
x+=1
if count <2:
list1.append(a)
a+=1
print (max(list1))
Here is my Python code:
num=600851475143
i=2 # Smallest prime factor
for k in range(0,num):
if i >= num: # Prime factor of the number should not be greater than the number
break
elif num % i == 0: # Check if the number is evenly divisible by i
num = num / i
else:
i= i + 1
print ("biggest prime number is: "+str(num))
Here is my python code:
import math
ma = 600851475143
mn = 2
s = []
while mn < math.sqrt(ma):
rez = ma / mn
mn += 1
if ma % mn == 0:
s.append(mn)
print(max(s))
def prime_max(x):
a = x
i = 2
while i in range(2,int(a+1)):
if a%i == 0:
a = a/i
if a == 1:
print(i)
i = i-1
i = i+1
'''
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143 ?
'''
import math
def isPrime(x):
if x<2:
return False
for i in range(2,int(math.sqrt(x))):
if not x%i:
return False
return True
def largest_factor(number):
for i in range (2, int(math.sqrt(number))):
if number%i == 0:
number = number/i
if isPrime(number) is True:
max_val = number
break
print max_val
else:
i += 1
return max_val
largest_factor(600851475143)
This actually compiles very fast. It checks for the number formed for being the prime number or not. Thanks
Another solution to this problem using Python.
def lpf(x):
lpf=2
while (x>lpf):
if (x%lpf==0):
x=x/lpf
else:
lpf+=1
return x
print(lpf(600851475143))