I spent about 3 days reading about this topic...
I am totally lost now thanks to the many tutorials and answered questions about how to create a native DLL. If you h
ah i think I found what I was looking for after reading this [http://www.codeproject.com/Articles/9405/Using-classes-exported-from-a-DLL-using-LoadLibrar]
correct me if wrong
if that is the way then iam very greatfull for all of you guys
going to start working on it soon...
Yours...
Having done this a bunch of times, the easiest way to do this is to write a C++/CLI wrapper to your existing classes. The reason being that P/Invoke works best on calls that are strictly C functions and not methods in a C++ class. In your example, how would you call operator new
for the class that you specify?
If you can write this as a C++/CLI dll, then what you get is something that looks like this:
public ref class CliHuman {
public:
CliHuman() : _human(new Human()) { }
~CliHuman() { delete _human; }
protected:
!CliHuman() { delete _human; }
public:
void DoPee() { _human->Do_Pee(); }
private:
Human *_human;
};
Now, you might not have the freedom to do this. In this case, your best bet is to think about what it would take to expose a C API of your C++ object. For example:
extern "C" {
void *HumanCreate() { return (void *)new Human(); }
void HumanDestroy(void *p) { Human *h = (Human *)h; delete h; }
void HumanDoPee(void *p) { Human *h = (Human *)h; h->Pee(); }
};
You can P/Invoke into these wrappers very easily.
From an engineering standpoint, you would never want to do this ever since calling .NET code could pass in any arbitrary IntPtr. In my code, I like to do something like this:
#define kHumanMagic 0xbeefbeef;
typedef struct {
int magic;
Human *human;
} t_human;
static void *AllocateHuman()
{
t_human *h = (t_human *)malloc(sizeof(t_human));
if (!h) return 0;
h->magic = kHumanMagic;
h->human = new Human();
return h;
}
static void FreeHuman(void *p) /* p has been verified */
{
if (!p) return;
t_human *h = (t_human)p;
delete h->human;
h->human = 0;
h->magic = 0;
free(h);
}
static Human *HumanFromPtr(void *p)
{
if (!p) return 0;
t_human *h = (t_human *)p;
if (h->magic != kHumanMagic) return 0;
return h->human;
}
void *HumanCreate() { return AllocateHuman(); }
void HumanDestroy(void *p)
{
Human *h = HumanFromPtr(p);
if (h) {
FreeHuman(p);
}
else { /* error handling */ }
}
void HumanPee(void *p)
{
Human *h = HumanFromPtr(p);
if (h) h->Do_Pee();
else { /* error handling */ }
}
What you can see that I've done is create a light wrapper on top of the class that lets me verify that what comes in is more likely to be a correct pointer to what we want. The safety is likely not for your clients but for you - if you have to wrap a ton of classes, this will be more likely to catch errors in your code where you use one wrapper in place of another.
In my code base, we have found it especially useful to have a structure where we build a static library with the low-level code and the C-ish API on top of it then link that into a C++/CLI project that calls it (although I suppose to could P/Invoke into it from C# as well) instead of having the C++/CLI directly wrap the C++. The reason is that (to our surprise), all the low-level code which was using STL, was having the STL implementations done in CLI rather than in x86 or x64. This meant that supposedly low-level code that was iterating over STL collections would do something like 4n CLI transitions. By isolating the code, we worked around that quite well.
I think you'd be better off making a plain C interface to your C++ code. C++ linking is really only good for other C++ programs, due to name mangling. C functions, however, can be used in many languages without any problem - python, C#, haskell, etc.
Let's suppose, however, you want to have some C++ classes accessible from your C interface. The way I like to do this is:
so something like this:
int CreateNiftyInstance()
{
int i = global_store.get_id();
Nifty *n = new Nifty();
global_store.save_obj(i, n);
return i;
}
void DoSomethingNifty(int id, const char *aCData)
{
// lame dynamic cast. Making it type safe is possible with dedicated stores for
// each type of object.
Nifty *n = dynamic_cast<Nifty*>(global_store.get_obj(i));
if n
{
n->DoSomething(aCData);
}
}