I have the following dataframe:
Timestamp S_time1 S_time2 End_Time_1 End_time_2 Sign_1 Sign_2
0 2413044 0 0 0
Input:
print df
Timestamp S_time1 S_time2 End_Time_1 End_time_2 Sign_1 Sign_2
0 2413044 0 0 0 0 x x
1 2422476 0 0 0 0 x x
2 2431908 0 0 0 0 x x
3 2441341 0 0 0 0 x x
4 2541232 2526631 2528631 2520631 2530631 10 80
5 2560273 2544946 2546496 2546496 2548496 40 80
6 2577224 2564010 2566010 2566010 2568010 null null
7 2592905 2580959 2582959 2582959 2584959 null null
2 approaches:
In [231]: %timeit s(df)
1 loops, best of 3: 2.78 s per loop
In [232]: %timeit m(df)
1 loops, best of 3: 690 ms per loop
def m(df):
#resample column Timestamp by 100ms, convert bak to integers
df['Timestamp'] = df['Timestamp'].astype('timedelta64[ms]')
df['i'] = 1
df = df.set_index('Timestamp')
df1 = df[[]].resample('100ms', how='first').reset_index()
df1['Timestamp'] = (df1['Timestamp'] / np.timedelta64(1, 'ms')).astype(int)
#felper column i for merging
df1['i'] = 1
#print df1
out = df1.merge(df,on='i', how='left')
out1 = out[['Timestamp', 'Sign_1']][(out.Timestamp >= out.S_time1) & (out.Timestamp <= out.End_Time_1)]
out2 = out[['Timestamp', 'Sign_2']][(out.Timestamp >= out.S_time2) & (out.Timestamp <= out.End_time_2)]
out1 = out1.rename(columns={'Sign_1':'Bin_time'})
out2 = out2.rename(columns={'Sign_2':'Bin_time'})
df = pd.concat([out1, out2], ignore_index=True).drop_duplicates(subset='Timestamp')
df1 = df1.set_index('Timestamp')
df = df.set_index('Timestamp')
df = df.reindex(df1.index).reset_index()
#print df.head(10)
def s(df):
#resample column Timestamp by 100ms, convert bak to integers
df['Timestamp'] = df['Timestamp'].astype('timedelta64[ms]')
df = df.set_index('Timestamp')
out = df[[]].resample('100ms', how='first')
out = out.reset_index()
out['Timestamp'] = (out['Timestamp'] / np.timedelta64(1, 'ms')).astype(int)
#print out.head(10)
#search start end
def search(x):
mask1 = (df.S_time1<=x['Timestamp']) & (df.End_Time_1>=x['Timestamp'])
#if at least one True return first value of series
if mask1.any():
return df.loc[mask1].Sign_1[0]
#check second start and end time
else:
mask2 = (df.S_time2<=x['Timestamp']) & (df.End_time_2>=x['Timestamp'])
if mask2.any():
#if at least one True return first value
return df.loc[mask2].Sign_2[0]
else:
#if all False return NaN
return np.nan
out['Bin_time'] = out.apply(search, axis=1)
#print out.head(10)