(This is not a duplicate of this or this that refer to fixed sizes, the issue is not to understand how pointers are stored, but if the compiler can automate the manual funct
Your code invokes undefined behavior because x.data()
does not point to an array of pointers but to an array of 1000 objects of type char
. You should be thankful that it crashes… ;-)
One way to access a contiguous buffer of some type as if it was a multidimensional array is to have another object that represents a multidimensional view into this buffer. This view object can then, e.g., provide member functions to access the data using a multidimensional index. To enable the a[i][j][k]
kind of syntax (which you seem to be aiming for), provide an overloaded []
operator which returns a proxy object that itself offers an operator []
and so on until you get down to a single dimension.
For example, for the case that dimensions are fixed at compile time, we can define
template <int Extent, int... Extents>
struct row_major_layout;
template <int Extent>
struct row_major_layout<Extent>
{
template <typename T>
static auto view(T* data) { return data; }
};
template <int Extent, int... Extents>
struct row_major_layout
{
static constexpr int stride = (Extents * ... * 1);
template <typename T>
class span
{
T* data;
public:
span(T* data) : data(data) {}
auto operator[](std::size_t i) const
{
return row_major_layout<Extents...>::view(data + i * stride);
}
};
template <typename T>
static auto view(T* data) { return span<T>(data); }
};
and then simply create and access such a row_major_layout
view
void test()
{
constexpr int M = 7, N = 2, K = 5;
std::vector<int> bla(row_major_layout<M, N, K>::size);
auto a3d = row_major_layout<M, N, K>::view(data(bla));
a3d[2][1][3] = 42;
}
live example here
Or in case the array bounds are dynamic:
template <int D>
class row_major_layout;
template <>
class row_major_layout<1>
{
public:
row_major_layout(std::size_t extent) {}
static constexpr std::size_t size(std::size_t extent)
{
return extent;
}
template <typename T>
friend auto view(T* data, const row_major_layout&)
{
return data;
}
};
template <int D>
class row_major_layout : row_major_layout<D - 1>
{
std::size_t stride;
public:
template <typename... Dim>
row_major_layout(std::size_t extent, Dim&&... extents)
: row_major_layout<D - 1>(std::forward<Dim>(extents)...), stride((extents * ... * 1))
{
}
template <typename... Dim>
static constexpr std::size_t size(std::size_t extent, Dim&&... extents)
{
return extent * row_major_layout<D - 1>::size(std::forward<Dim>(extents)...);
}
template <typename T>
class span
{
T* data;
std::size_t stride;
const row_major_layout<D - 1>& layout;
public:
span(T* data, std::size_t stride, const row_major_layout<D - 1>& layout)
: data(data), stride(stride), layout(layout)
{
}
auto operator[](std::size_t i) const
{
return view(data + i * stride, layout);
}
};
template <typename T>
friend auto view(T* data, const row_major_layout& layout)
{
return span<T>(data, layout.stride, layout);
}
};
and
void test(int M, int N, int K)
{
std::vector<int> bla(row_major_layout<3>::size(M, N, K));
auto a3d = view(data(bla), row_major_layout<3>(M, N, K));
a3d[2][1][3] = 42;
}
live example here
Based on this answer assuming you want an array of char
you can do something like
std::vector<char> x(1000);
char (&ar)[200][5] = *reinterpret_cast<char (*)[200][5]>(x.data());
Then you can use ar
as a normal two-dimensional array, like
char c = ar[2][3];
For anyone trying to achieve the same, I 've created a variadit template function that would create a n-dimension array in existing memory:
template <typename T = char> size_t CreateArrayAtMemory(void*, size_t bs)
{
return bs*sizeof(T);
}
template <typename T = char,typename ... Args>
size_t CreateArrayAtMemory(void* p, size_t bs, Args ... args)
{
size_t R = 0;
size_t PS = sizeof(void*);
char* P = (char*)p;
char* P0 = (char*)p;
size_t BytesForAllPointers = bs*PS;
R = BytesForAllPointers;
char* pos = P0 + BytesForAllPointers;
for (size_t i = 0; i < bs; i++)
{
char** pp = (char**)P;
if (p)
*pp = pos;
size_t RLD = CreateArrayAtMemory<T>(p ? pos : nullptr, args ...);
P += PS;
R += RLD;
pos += RLD;
}
return R;
}
Usage:
Create a 2x3x4 char array:
int j = 0;
size_t n3 = CreateArrayAtMemory<char>(nullptr,2,3,4);
std::vector<char> a3(n3);
char*** f3 = (char***)a3.data();
CreateArrayAtMemory<char>(f3,2,3,4);
for (int i1 = 0; i1 < 2; i1++)
{
for (int i2 = 0; i2 < 3; i2++)
{
for (int i3 = 0; i3 < 4; i3++)
{
f3[i1][i2][i3] = j++;
}
}
}
To allocate T[rows][cols]
array as a one-dimensional array allocate T[rows * cols]
.
To access element [i][j]
of that one-dimensional array you can do p[i * cols + j]
.
Example:
template<class T>
struct Array2d {
T* elements_;
unsigned columns_;
Array2d(unsigned rows, unsigned columns)
: elements_(new T[rows * columns]{}) // Allocate and value-initialize.
, columns_(columns)
{}
T* operator[](unsigned row) {
return elements_ + row * columns_;
}
// TODO: Implement the special member functions.
};
int main() {
Array2d<int> a(5, 10);
a[3][1] = 0;
}