TensorFlow broadcasting

后端 未结 2 657
渐次进展
渐次进展 2020-12-19 20:25

Broadcasting is the process of making arrays with different shapes have compatible shapes for arithmetic operations. In numpy, we can broadcast arrays. Does TensorFlow graph

相关标签:
2条回答
  • 2020-12-19 21:05

    yes it is supported. Open a terminal and try this:

    import tensorflow as tf
    
    #define tensors
    a=tf.constant([[10,20],[30,40]]) #Dimension 2X2
    b=tf.constant([5])
    c=tf.constant([2,2])
    d=tf.constant([[3],[3]])
    
    sess=tf.Session() #start a session
    
    #Run tensors to generate arrays
    mat,scalar,one_d,two_d = sess.run([a,b,c,d])
    
    #broadcast multiplication with scalar
    sess.run(tf.multiply(mat,scalar))
    
    #broadcast multiplication with 1_D array (Dimension 1X2)
    sess.run(tf.multiply(mat,one_d))
    
    #broadcast multiply 2_d array (Dimension 2X1)
    sess.run(tf.multiply(mat,two_d))
    
    sess.close()
    
    0 讨论(0)
  • 2020-12-19 21:28

    The short answer is yes.

    c.f. Tensorflow Math doc

    Note: Elementwise binary operations in TensorFlow follow numpy-style broadcasting.

    c.f. tf.add() doc, or tf.multiply() doc, etc.:

    NOTE: [the operation] supports broadcasting. More about broadcasting here

    0 讨论(0)
提交回复
热议问题