Convert header into row

后端 未结 2 760
青春惊慌失措
青春惊慌失措 2020-12-19 15:00

I have a table like this.

user    01/12/15    02/12/15 someBool
u1      100         300      true
u2      200        -100      false
u3     -50          200          


        
相关标签:
2条回答
  • 2020-12-19 15:16

    numpy reconstruct the whole thing

    id_vars = ['user', 'someBool']
    
    the_rest = df.columns.difference(id_vars).tolist()
    m, n = len(df), len(the_rest)
    var_slc = np.arange(m).repeat(n)
    
    pd.DataFrame(
        np.hstack([
                df[id_vars].values[var_slc],
                np.tile(the_rest, m)[:, None],
                df[the_rest].values.reshape(-1, 1)
            ]), columns=id_vars + ['date', 'value']
    )
    
      user someBool      date value
    0   u1     True  01/12/15   100
    1   u1     True  02/12/15   300
    2   u2    False  01/12/15   200
    3   u2    False  02/12/15  -100
    4   u3     True  01/12/15   -50
    5   u3     True  02/12/15   200
    
    0 讨论(0)
  • 2020-12-19 15:29

    You need melt:

    df = pd.melt(df, id_vars=['user','someBool'], var_name='date')
    print (df)
      user someBool      date  value
    0   u1     True  01/12/15    100
    1   u2    False  01/12/15    200
    2   u3     True  01/12/15    -50
    3   u1     True  02/12/15    300
    4   u2    False  02/12/15   -100
    5   u3     True  02/12/15    200
    

    Another solution with stack:

    df = df.set_index(['user','someBool'])
           .stack()
           .reset_index(name='value')
           .rename(columns={'level_2':'date'})
    print (df)
      user someBool      date  value
    0   u1     True  01/12/15    100
    1   u1     True  02/12/15    300
    2   u2    False  01/12/15    200
    3   u2    False  02/12/15   -100
    4   u3     True  01/12/15    -50
    5   u3     True  02/12/15    200
    
    0 讨论(0)
提交回复
热议问题