Converting .tflite to .pb

前端 未结 3 1388
傲寒
傲寒 2020-12-19 10:08

Problem: How can i convert a .tflite (serialised flat buffer) to .pb (frozen model)? The documentation only talks about one way co

相关标签:
3条回答
  • 2020-12-19 10:57

    I found the answer here

    We can use Interpreter to analysis the model and the same code looks like following:

    import numpy as np
    import tensorflow as tf
    
    # Load TFLite model and allocate tensors.
    interpreter = tf.lite.Interpreter(model_path="converted_model.tflite")
    interpreter.allocate_tensors()
    
    # Get input and output tensors.
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()
    
    # Test model on random input data.
    input_shape = input_details[0]['shape']
    input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
    interpreter.set_tensor(input_details[0]['index'], input_data)
    
    interpreter.invoke()
    output_data = interpreter.get_tensor(output_details[0]['index'])
    print(output_data)
    

    Netron is the best analysis/visualising tool i found, it can understand lot of formats including .tflite.

    0 讨论(0)
  • 2020-12-19 11:00

    I have done this with TOCO, using tf 1.12

    tensorflow_1.12/tensorflow/bazel-bin/tensorflow/contrib/lite/toco/toco -- 
    output_file=coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.pb -- 
    output_format=TENSORFLOW_GRAPHDEF --input_format=TFLITE -- 
    input_file=coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.tflite -- 
    inference_type=FLOAT --input_type=FLOAT --input_array="" --output_array="" -- 
    input_shape=1,450,450,3 --dump_grapHviz=./
    

    (you can remove the dump_graphviz option)

    0 讨论(0)
  • 2020-12-19 11:01

    I don't think there is a way to restore tflite back to pb as some information are lost after conversion. I found an indirect way to have a glimpse on what is inside tflite model is to read back each of the tensor.

    interpreter = tf.contrib.lite.Interpreter(model_path=model_path)     
    interpreter.allocate_tensors()
    
    # trial some arbitrary numbers to find out the num of tensors
    num_layer = 89 
    for i in range(num_layer):
        detail = interpreter._get_tensor_details(i)
        print(i, detail['name'], detail['shape'])
    

    and you would see something like below. As there are only limited of operations that are currently supported, it is not too difficult to reverse engineer the network architecture. I have put some tutorials too on my Github

    0 MobilenetV1/Logits/AvgPool_1a/AvgPool [   1    1    1 1024]
    1 MobilenetV1/Logits/Conv2d_1c_1x1/BiasAdd [   1    1    1 1001]
    2 MobilenetV1/Logits/Conv2d_1c_1x1/Conv2D_bias [1001]
    3 MobilenetV1/Logits/Conv2d_1c_1x1/weights_quant/FakeQuantWithMinMaxVars [1001    1    1 1024]
    4 MobilenetV1/Logits/SpatialSqueeze [   1 1001]
    5 MobilenetV1/Logits/SpatialSqueeze_shape [2]
    6 MobilenetV1/MobilenetV1/Conv2d_0/Conv2D_Fold_bias [32]
    7 MobilenetV1/MobilenetV1/Conv2d_0/Relu6 [  1 112 112  32]
    8 MobilenetV1/MobilenetV1/Conv2d_0/weights_quant/FakeQuantWithMinMaxVars [32  3  3  3]
    9 MobilenetV1/MobilenetV1/Conv2d_10_depthwise/Relu6 [  1  14  14 512]
    10 MobilenetV1/MobilenetV1/Conv2d_10_depthwise/depthwise_Fold_bias [512]
    11 MobilenetV1/MobilenetV1/Conv2d_10_depthwise/weights_quant/FakeQuantWithMinMaxVars [  1   3   3 512]
    12 MobilenetV1/MobilenetV1/Conv2d_10_pointwise/Conv2D_Fold_bias [512]
    13 MobilenetV1/MobilenetV1/Conv2d_10_pointwise/Relu6 [  1  14  14 512]
    14 MobilenetV1/MobilenetV1/Conv2d_10_pointwise/weights_quant/FakeQuantWithMinMaxVars [512   1   1 512]
    15 MobilenetV1/MobilenetV1/Conv2d_11_depthwise/Relu6 [  1  14  14 512]
    16 MobilenetV1/MobilenetV1/Conv2d_11_depthwise/depthwise_Fold_bias [512]
    17 MobilenetV1/MobilenetV1/Conv2d_11_depthwise/weights_quant/FakeQuantWithMinMaxVars [  1   3   3 512]
    18 MobilenetV1/MobilenetV1/Conv2d_11_pointwise/Conv2D_Fold_bias [512]
    19 MobilenetV1/MobilenetV1/Conv2d_11_pointwise/Relu6 [  1  14  14 512]
    20 MobilenetV1/MobilenetV1/Conv2d_11_pointwise/weights_quant/FakeQuantWithMinMaxVars [512   1   1 512]
    
    0 讨论(0)
提交回复
热议问题