I have two data frames. One (df1
) contains all columns and rows of interest, but includes missing observations. The other (df2
) includes values t
This will do:
m <- merge(df1, df2, by="county", all=TRUE)
dotx <- m[,grepl("\\.x",names(m))]
doty <- m[,grepl("\\.y",names(m))]
dotx[is.na(dotx)] <- doty[is.na(dotx)]
names(dotx) <- sapply(strsplit(names(dotx),"\\."), `[`, 1)
result <- cbind(m[,!grepl("\\.x",names(m)) & !grepl("\\.y",names(m))], dotx)
Checking:
> result
county year1 year2 year3
1 aa 10 20 30
2 bb 1 2 3
3 cc 5 10 15
4 dd 100 150 200
aggregate
can do this:
aggregate(. ~ county,
data=merge(df1, df2, all=TRUE), # Merged data, including NAs
na.action=na.pass, # Aggregate rows with missing values...
FUN=sum, na.rm=TRUE) # ...but instruct "sum" to ignore them.
## county year2 year3 year1
## 1 aa 20 30 10
## 2 bb 2 3 1
## 3 cc 10 15 5
## 4 dd 150 200 100
Another option unsing reshape2
and working in the long format :
library(reshape2)
## reshape to long format
df1.m <- melt(df1)
df2.m <- melt(df2)
## get common values
idx <- df1.m$county %in% df2.m$county &
df1.m$variable%in% df2.m$variable
## replace NA values
df1.m[idx,]$value <- ifelse(is.na(df1.m[idx,]$value),
df2.m$value ,
df1.m[idx,]$value)
## get the wide format
dcast(data=df1.m,county~variable)
county year1 year2 year3
1 aa 10 20 30
2 bb 1 2 3
3 cc 5 10 15
4 dd 100 150 200