I\'ve a python program that spawns a number of threads. These threads last anywhere between 2 seconds to 30 seconds. In the main thread I want to track whenever each thread
Why not just have the threads themselves print a completion message, or call some other completion callback when done?
You can the just join
these threads from your main program, so you'll see a bunch of completion messages and your program will terminate when they're all done, as required.
Here's a quick and simple demonstration:
#!/usr/bin/python
import threading
import time
def really_simple_callback(message):
"""
This is a really simple callback. `sys.stdout` already has a lock built-in,
so this is fine to do.
"""
print message
def threaded_target(sleeptime, callback):
"""
Target for the threads: sleep and call back with completion message.
"""
time.sleep(sleeptime)
callback("%s completed!" % threading.current_thread())
if __name__ == '__main__':
# Keep track of the threads we create
threads = []
# callback_when_done is effectively a function
callback_when_done = really_simple_callback
for idx in xrange(0, 10):
threads.append(
threading.Thread(
target=threaded_target,
name="Thread #%d" % idx,
args=(10 - idx, callback_when_done)
)
)
[t.start() for t in threads]
[t.join() for t in threads]
# Note that thread #0 runs for the longest, but we'll see its message first!
What I would suggest is loop like this
while len(threadSet) > 0:
time.sleep(1)
for thread in theadSet:
if not thread.isAlive()
print "Thread "+thread.getName()+" terminated"
threadSet.remove(thread)
There is a 1 second sleep, so there will be a slight delay between the thread termination and the message being printed. If you can live with this delay, then I think this is a simpler solution than the one you proposed in your question.
You can let the threads push their results into a threading.Queue
. Have another thread wait on this queue and print the message as soon as a new item appears.
The thread needs to be checked using the Thread.is_alive()
call.
I use a slightly different technique because of the nature of the threads I used in my application. To illustrate, this is a fragment of a test-strap program I wrote to scaffold a barrier class for my threading class:
while threads:
finished = set(threads) - set(threading.enumerate())
while finished:
ttt = finished.pop()
threads.remove(ttt)
time.sleep(0.5)
Why do I do it this way? In my production code, I have a time limit, so the first line actually reads "while threads and time.time() < cutoff_time". If I reach the cut-off, I then have code to tell the threads to shut down.
Here's a variation on @detly's answer that lets you specify the messages from your main thread, instead of printing them from your target functions. This creates a wrapper function which calls your target and then prints a message before terminating. You could modify this to perform any kind of standard cleanup after each thread completes.
#!/usr/bin/python
import threading
import time
def target1():
time.sleep(0.1)
print "target1 running"
time.sleep(4)
def target2():
time.sleep(0.1)
print "target2 running"
time.sleep(2)
def launch_thread_with_message(target, message, args=[], kwargs={}):
def target_with_msg(*args, **kwargs):
target(*args, **kwargs)
print message
thread = threading.Thread(target=target_with_msg, args=args, kwargs=kwargs)
thread.start()
return thread
if __name__ == '__main__':
thread1 = launch_thread_with_message(target1, "finished target1")
thread2 = launch_thread_with_message(target2, "finished target2")
print "main: launched all threads"
thread1.join()
thread2.join()
print "main: finished all threads"