Here\'s a very simple recursive function:
func lap (n: Int) -> Int {
if n == 0 { return 0 }
return lap (n - 1)
}
If I want to con
EDIT This has been resolved with Swift 2 using nested functions. Apple suggests this code:
func f(n: Int) {
func lap(n: Int) -> Int {
if n == 0 { return 0 }
print(n)
return lap(n - 1)
}
lap(n)
}
for i in 0..<1000000 { f(i) }
Although this is not obvious from the current example, so-called local functions capture the locals of the enclosing scope.
Using a location function does not leak, whereas a closure would. However, clearly, lap
can't be reassigned in this case.
I received an email from Apple's Joe Groff stating that they still plan on making it possible to capture closures as weak and mutable variables at a later point. This does confirm, however, that there's no way to do it right now except with a local function.
Your current solution has a memory leak in it: lap
's closure has a strong reference to itself, meaning that it cannot ever be released. This can easily be verified by launching the following program with the Leaks instrument attached:
import Foundation
func f(n: Int) {
var lap: (Int)->Int = { $0 }
lap = {
(n: Int) -> Int in
if n == 0 { return 0 }
println(n)
return lap (n - 1)
}
lap(n)
}
for i in 0..<1000000 {
f(i)
}
Unfortunately, as the explicit capture syntax cannot be applied to closure types (you get an error that says "'unowned' cannot be applied to non-class type '(Int) -> Int'"), there appears to be no easy way to achieve this without leaking. I filed a bug report about it.
What about this:
let lap = {(Void) -> ((Int) -> Int) in
func f(n: Int) -> Int {
print(n)
return n == 0 ? 0 : f(n - 1)
}
return f
}()
It's quite simple, I've just defined a recursive local function inside a closure which returns the function.
However, I have to say that the answer from @Bryan Chen about the Y combinator is awesome.
Here's a response to my own question:
var lap: (Int)->Int = { $0 }
lap = {
(n: Int) -> Int in
if n == 0 { return 0 }
println(n)
return lap (n - 1)
}
I had the same problem and was not statisfied with anything that was out there, so I created a library and made it available on GitHub.
Using this library (with Swift 3.0) your code would look like this:
let lap = Recursion<Int, Int> { (n, f) in
n == 0 ? 0 : f(n-1)
}.closure
you can workaround it with two step assignment
var lap : (Int) -> Int!
lap = {
(n: Int) -> Int in
if n == 0 { return 0 }
return lap(n - 1)
}
or you can use Y combinator
func Y<T, R>( f: (T -> R) -> (T -> R) ) -> (T -> R) {
return { t in f(Y(f))(t) }
}
let lap = Y {
(f : Int -> Int) -> (Int -> Int) in
return { (n : Int) -> Int in return n == 0 ? 0 : f(n - 1) }
}
// with type inference
let lap2 = Y {
f in { n in n == 0 ? 0 : f(n - 1) }
}
This is a workaround of the memory leak problem that @zneak found (It doesn't have memory leak but captured the wrong value)
func f(n: Int) {
var f = Foo()
var lap: @objc_block (Int)->Int = { $0 }
var obj: NSObject = reinterpretCast(lap)
lap = {
[weak obj] (n: Int) -> Int in // unowned will cause crush
if n == 0 { return 0 }
println(f)
var lap2 : @objc_block (Int)->Int = reinterpretCast(obj)
return lap2 (n - 1)
}
lap(n)
}
for i in 0..<5 {
f(i)
}
class Foo {
init() {
println("init");
}
deinit {
println("deinit")
}
}