How to create a DataFrame out of rows while retaining existing schema?

前端 未结 4 1687
太阳男子
太阳男子 2020-12-18 15:34

If I call map or mapPartition and my function receives rows from PySpark what is the natural way to create either a local PySpark or Pandas DataFrame? Something

相关标签:
4条回答
  • 2020-12-18 16:01

    You could use toPandas(),

    pandasdf = mydf.toPandas()
    
    0 讨论(0)
  • 2020-12-18 16:16

    It's actually possible to convert Spark rows to Pandas inside executors & finally create Spark DataFrame out of those output using mapPartitions. See my gist in Github

    # Convert function to use in mapPartitions
    def rdd_to_pandas(rdd_):
        # convert rows to dict
        rows = (row_.asDict() for row_ in rdd_)
        # create pandas dataframe
        pdf = pd.DataFrame(rows)
    
        # Rows/Pandas DF can be empty depending on patiition logic.
        # Make sure to check it here, otherwise it will throw untrackable error
        if len(pdf) > 0:
            #
            # Do something with pandas DataFrame 
            #
            pass
    
        return pdf.to_dict(orient='records')
    
    # Create Spark DataFrame from resulting RDD
    rdf = spark.createDataFrame(df.rdd.mapPartitions(rdd_to_pandas))
    
    0 讨论(0)
  • 2020-12-18 16:17

    In order to create a spark SQL dataframe you need a hive context:

    hc = HiveContext(sparkContext)
    

    With the HiveContext you can create a SQL dataframe via the inferSchema function:

    sparkSQLdataframe = hc.inferSchema(rows)  
    
    0 讨论(0)
  • 2020-12-18 16:23

    Spark >= 2.3.0

    Since Spark 2.3.0 it is possible to use Pandas Series or DataFrame by partition or group. See for example:

    • Applying UDFs on GroupedData in PySpark (with functioning python example)
    • Efficient string suffix detection

    Spark < 2.3.0

    what is the natural way to create either a local PySpark

    There is no such thing. Spark distributed data structures cannot be nested or you prefer another perspective you cannot nest actions or transformations.

    or Pandas DataFrame

    It is relatively easy but you have to remember at least few things:

    • Pandas and Spark DataFrames are not even remotely equivalent. These are different structures, with different properties and in general you cannot replace one with another.
    • Partitions can be empty.
    • It looks like you're passing dictionaries. Remember that base Python dictionary is unordered (unlike collections.OrderedDict for example). So passing columns may not work as expected.
    import pandas as pd
    
    rdd = sc.parallelize([
        {"x": 1, "y": -1}, 
        {"x": -3, "y": 0},
        {"x": -0, "y": 4}
    ])
    
    def combine(iter):
        rows = list(iter)
        return [pd.DataFrame(rows)] if rows else []
    
    rdd.mapPartitions(combine).first()
    ##    x  y
    ## 0  1 -1
    
    0 讨论(0)
提交回复
热议问题