The sample CSV is like this:
user_id lat lon
1 19.111841 72.910729
1 19.111342 72.908387
2 19.111542 72.907387
2 19.1
You just need a working data structure, dict of lists and lat/lon as tuples. Quickly prototyped it could look like this:
from haversine import haversine # pip3 install haversine
from collections import defaultdict
csv = """
1 19.111841 72.910729
1 19.111342 72.908387
2 19.111342 72.908387
2 19.137815 72.914085
2 19.119677 72.905081
2 19.119677 72.905081
3 19.119677 72.905081
3 19.120217 72.907121
5 19.119677 72.905081
5 19.119677 72.905081
5 19.119677 72.905081
5 19.111860 72.911346
5 19.111860 72.911346
5 19.119677 72.905081
6 19.119677 72.905081
6 19.119677 72.905081
"""
d = defaultdict(list) # data structure !
for line in csv.splitlines():
line = line.strip() # remove whitespaces
if not line:
continue # skip empty lines
cId, lat, lon = line.split(' ')
d[cId].append((float(lat), float(lon)))
for k, v in d.items():
print ('Distance for id: ', k, haversine(v[0], v[1]))
returns:
Distance for id: 1 0.2522433072207346
Distance for id: 2 3.0039140173887557
Distance for id: 3 0.22257643412844885
Distance for id: 5 0.0
Distance for id: 6 0.0
Assuming that you want to compute haversine()
with the first element in each user id group against all the other entries in a group, this approach will work:
# copying example data from OP
import pandas as pd
df = pd.read_clipboard() # alternately, df = pd.read_csv(filename)
def haversine_wrapper(row):
# return None when both lon/lat pairs are the same
if (row['first_lon'] == row['lon']) & (row['first_lat'] == row['lat']):
return None
return haversine(row['first_lon'], row['first_lat'], row['lon'], row['lat'])
df['result'] = (df.merge(df.groupby('user_id', as_index=False)
.agg({'lat':'first','lon':'first'})
.rename(columns={'lat':'first_lat','lon':'first_lon'}),
on='user_id')
.apply(haversine_wrapper, axis='columns'))
print(df)
Output:
user_id lat lon result
0 1 19.111841 72.910729 NaN
1 1 19.111342 72.908387 0.252243
2 2 19.111542 72.907387 NaN
3 2 19.137815 72.914085 3.004976
4 2 19.119677 72.905081 0.936454
5 2 19.129677 72.905081 2.031021
6 3 19.319677 72.905081 NaN
7 3 19.120217 72.907121 22.179974
8 4 19.420217 72.807121 NaN
9 4 19.520217 73.307121 53.584504
10 5 19.319677 72.905081 NaN
11 5 19.419677 72.805081 15.286775
12 5 19.629677 72.705081 40.346128
13 5 19.111860 72.911347 23.117560
14 5 19.111860 72.931346 23.272178
15 5 19.219677 72.605081 33.395165
16 6 19.319677 72.805082 NaN
17 6 19.419677 72.905086 15.287063
Try this approach:
import pandas as pd
import numpy as np
# parse CSV to DataFrame. You may want to specify the separator (`sep='...'`)
df = pd.read_csv('/path/to/file.csv')
# vectorized haversine function
def haversine(lat1, lon1, lat2, lon2, to_radians=True, earth_radius=6371):
"""
slightly modified version: of http://stackoverflow.com/a/29546836/2901002
Calculate the great circle distance between two points
on the earth (specified in decimal degrees or in radians)
All (lat, lon) coordinates must have numeric dtypes and be of equal length.
"""
if to_radians:
lat1, lon1, lat2, lon2 = np.radians([lat1, lon1, lat2, lon2])
a = np.sin((lat2-lat1)/2.0)**2 + \
np.cos(lat1) * np.cos(lat2) * np.sin((lon2-lon1)/2.0)**2
return earth_radius * 2 * np.arcsin(np.sqrt(a))
Now we can calculate distances between coordinates belonging to the same id
(group):
df['dist'] = \
np.concatenate(df.groupby('id')
.apply(lambda x: haversine(x['lat'], x['lon'],
x['lat'].shift(), x['lon'].shift())).values)
Result:
In [105]: df
Out[105]:
id lat lon dist
0 1 19.111841 72.910729 NaN
1 1 19.111342 72.908387 0.252243
2 2 19.111542 72.907387 NaN
3 2 19.137815 72.914085 3.004976
4 2 19.119677 72.905081 2.227658
5 2 19.129677 72.905081 1.111949
6 3 19.319677 72.905081 NaN
7 3 19.120217 72.907121 22.179974
8 4 19.420217 72.807121 NaN
9 4 19.520217 73.307121 53.584504
10 5 19.319677 72.905081 NaN
11 5 19.419677 72.805081 15.286775
12 5 19.629677 72.705081 25.594890
13 5 19.111860 72.911347 61.509917
14 5 19.111860 72.931346 2.101215
15 5 19.219677 72.605081 36.304756
16 6 19.319677 72.805082 NaN
17 6 19.419677 72.905086 15.287063
This should work exactly like your sample input and output.
SCRIPT
import csv
from haversine import haversine
with open('file.csv') as file:
reader = csv.reader(file)
next(reader) # skip header
previous_row = (None, None, None)
for id, lon, lat in reader:
id, lon, lat = int(id), float(lon), float(lat)
current_row = id, lon, lat
distance = float('nan')
if current_row[0] == previous_row[0]:
distance = haversine(previous_row[1:], current_row[1:])
print('{} {:02.7f} {:02.7f} {:02.7f}'.format(*current_row, distance))
previous_row = current_row
OUTPUT
1 19.1118410 72.9107290 nan
1 19.1113420 72.9083870 0.2522433
2 19.1115420 72.9073870 nan
2 19.1378150 72.9140850 3.0049762
2 19.1196770 72.9050810 2.2276576
2 19.1296770 72.9050810 1.1119493
3 19.3196770 72.9050810 nan
3 19.1202170 72.9071210 22.1799743
4 19.4202170 72.8071210 nan
4 19.5202170 73.3071210 53.5845041
5 19.3196770 72.9050810 nan
5 19.4196770 72.8050810 15.2867753
5 19.6296770 72.7050810 25.5948897
5 19.1118600 72.9113470 61.5099175
5 19.1118600 72.9313460 2.1012148
5 19.2196770 72.6050810 36.3047557
6 19.3196770 72.8050820 nan
6 19.4196770 72.9050860 15.2870632