Question: Is there a way to check if a color bar already exists?
I am making many plots with a loop. The issue is that the color bar is drawn every
If you can access to axis and image information, colorbar can be retrieved as a property of the image (or the mappable to which associate colorbar).
Following a previous answer (How to retrieve colorbar instance from figure in matplotlib), an example could be:
ax=plt.gca() #plt.gca() for current axis, otherwise set appropriately.
im=ax.images #this is a list of all images that have been plotted
if im[-1].colorbar is None: #in this case I assume to be interested to the last one plotted, otherwise use the appropriate index or loop over
plt.colorbar() #plot a new colorbar
Note that an image without colorbar returns None to im[-1].colorbar
Is is actually not easy to remove a colorbar from a plot and later draw a new one to it. The best solution I can come up with at the moment is the following, which assumes that there is only one axes present in the plot. Now, if there was a second axis, it must be the colorbar beeing present. So by checking how many axes we find on the plot, we can judge upon whether or not there is a colorbar.
Here we also mind the user's wish not to reference any named objects from outside. (Which does not makes much sense, as we need to use plt
anyways, but hey.. so was the question)
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
im = ax.pcolormesh(np.array(np.random.rand(2,2) ))
ax.plot(np.cos(np.linspace(0.2,1.8))+0.9, np.sin(np.linspace(0.2,1.8))+0.9, c="k", lw=6)
ax.set_title("Title")
cbar = plt.colorbar(im)
cbar.ax.set_ylabel("Label")
for i in range(10):
# inside this loop we should not access any variables defined outside
# why? no real reason, but questioner asked for it.
#draw new colormesh
im = plt.gcf().gca().pcolormesh(np.random.rand(2,2))
#check if there is more than one axes
if len(plt.gcf().axes) > 1:
# if so, then the last axes must be the colorbar.
# we get its extent
pts = plt.gcf().axes[-1].get_position().get_points()
# and its label
label = plt.gcf().axes[-1].get_ylabel()
# and then remove the axes
plt.gcf().axes[-1].remove()
# then we draw a new axes a the extents of the old one
cax= plt.gcf().add_axes([pts[0][0],pts[0][1],pts[1][0]-pts[0][0],pts[1][1]-pts[0][1] ])
# and add a colorbar to it
cbar = plt.colorbar(im, cax=cax)
cbar.ax.set_ylabel(label)
# unfortunately the aspect is different between the initial call to colorbar
# without cax argument. Try to reset it (but still it's somehow different)
cbar.ax.set_aspect(20)
else:
plt.colorbar(im)
plt.show()
In general a much better solution would be to operate on the objects already present in the plot and only update them with the new data. Thereby, we suppress the need to remove and add axes and find a much cleaner and faster solution.
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
im = ax.pcolormesh(np.array(np.random.rand(2,2) ))
ax.plot(np.cos(np.linspace(0.2,1.8))+0.9, np.sin(np.linspace(0.2,1.8))+0.9, c="k", lw=6)
ax.set_title("Title")
cbar = plt.colorbar(im)
cbar.ax.set_ylabel("Label")
for i in range(10):
data = np.array(np.random.rand(2,2) )
im.set_array(data.flatten())
cbar.set_clim(vmin=data.min(),vmax=data.max())
cbar.draw_all()
plt.draw()
plt.show()
Actually, the latter approach of referencing objects from outside even works together with the multiprocess
approach desired by the questioner.
So, here is a code that updates the figure, without the need to delete the colorbar.
import matplotlib.pyplot as plt
import numpy as np
import multiprocessing
import time
fig, ax = plt.subplots()
im = ax.pcolormesh(np.array(np.random.rand(2,2) ))
ax.plot(np.cos(np.linspace(0.2,1.8))+0.9, np.sin(np.linspace(0.2,1.8))+0.9, c="w", lw=6)
ax.set_title("Title")
cbar = plt.colorbar(im)
cbar.ax.set_ylabel("Label")
tx = ax.text(0.2,0.8, "", fontsize=30, color="w")
tx2 = ax.text(0.2,0.2, "", fontsize=30, color="w")
def do(number):
start = time.time()
tx.set_text(str(number))
data = np.array(np.random.rand(2,2)*(number+1) )
im.set_array(data.flatten())
cbar.set_clim(vmin=data.min(),vmax=data.max())
tx2.set_text("{m:.2f} < {ma:.2f}".format(m=data.min(), ma= data.max() ))
cbar.draw_all()
plt.draw()
plt.savefig("multiproc/{n}.png".format(n=number))
stop = time.time()
return np.array([number, start, stop])
if __name__ == "__main__":
multiprocessing.freeze_support()
some_list = range(0,50)
num_proc = 5
p = multiprocessing.Pool(num_proc)
nu = p.map(do, some_list)
nu = np.array(nu)
plt.close("all")
fig, ax = plt.subplots(figsize=(16,9))
ax.barh(nu[:,0], nu[:,2]-nu[:,1], height=np.ones(len(some_list)), left=nu[:,1], align="center")
plt.show()
(The code at the end shows a timetable which allows to see that multiprocessing has indeed taken place)
There is an indirect way of guessing (with reasonable accuracy for most applications, I think) whether an Axes
instance is home to a color bar. Depending on whether it is a horizontal or vertical color bar, either the X axis or Y axis (but not both) will satisfy all of these conditions:
So here's a function for you:
def is_colorbar(ax):
"""
Guesses whether a set of Axes is home to a colorbar
:param ax: Axes instance
:return: bool
True if the x xor y axis satisfies all of the following and thus looks like it's probably a colorbar:
No ticks, no tick labels, no axis label, and range is (0, 1)
"""
xcb = (len(ax.get_xticks()) == 0) and (len(ax.get_xticklabels()) == 0) and (len(ax.get_xlabel()) == 0) and \
(ax.get_xlim() == (0, 1))
ycb = (len(ax.get_yticks()) == 0) and (len(ax.get_yticklabels()) == 0) and (len(ax.get_ylabel()) == 0) and \
(ax.get_ylim() == (0, 1))
return xcb != ycb # != is effectively xor in this case, since xcb and ycb are both bool
Thanks to this answer for the cool !=
xor trick: https://stackoverflow.com/a/433161/6605826
With this function, you can see if a colorbar exists by:
colorbar_exists = any([is_colorbar(ax) for ax in np.atleast_1d(gcf().axes).flatten()])
or if you're sure the colorbar will always be last, you can get off easy with:
colorbar_exists = is_colorbar(gcf().axes[-1])
One approach is:
initially (prior to having any color bar drawn), set a variable
colorBarPresent = False
in the method for drawing the color bar, check to see if it's already drawn. If not, draw it and set the colorBarPresent variable True:
def drawColorBar():
if colorBarPresent:
# leave the function and don't draw the bar again
else:
# draw the color bar
colorBarPresent = True