I want to find the values of col1 and col2 where the col1 and col2 of the first dataframe are
If somehow you must stick to isin or the negate version ~isin.
You may first create a new column, with the concatenation of col1, col2. Then use isin to filter your data. Here is the code:
import pandas as pd
df1 = pd.DataFrame({'col1': ['pizza', 'hamburger', 'hamburger', 'pizza', 'ice cream'], 'col2': ['boy', 'boy', 'girl', 'girl', 'boy']}, index=range(1,6))
df2 = pd.DataFrame({'col1': ['pizza', 'pizza', 'chicken', 'cake', 'cake', 'chicken', 'ice cream'], 'col2': ['boy', 'girl', 'girl', 'boy', 'girl', 'boy', 'boy']}, index=range(10,17))
df1['indicator'] = df1['col1'].str.cat(df1['col2'])
df2['indicator'] = df2['col1'].str.cat(df2['col2'])
df2.loc[df2['indicator'].isin(df1['indicator'])].drop(columns=['indicator'])
which gives
col1 col2
10 pizza boy
11 pizza girl
16 ice cream boy
If you do so remember to make sure that concatenating two columns doesn't create false positives e.g. concatenation of 123 and 456 in df1 and concatenation of 12 and 3456 in df2 will match even though their respective columns don't match. You can fix this problem by additional sep parameter.
df1['indicator'] = df1['col1'].str.cat(df1['col2'], sep='$$$')
df2['indicator'] = df2['col1'].str.cat(df2['col2'], sep='$$$')
Perform an inner merge on col1 and col2:
import pandas as pd
df1 = pd.DataFrame({'col1': ['pizza', 'hamburger', 'hamburger', 'pizza', 'ice cream'], 'col2': ['boy', 'boy', 'girl', 'girl', 'boy']}, index=range(1,6))
df2 = pd.DataFrame({'col1': ['pizza', 'pizza', 'chicken', 'cake', 'cake', 'chicken', 'ice cream'], 'col2': ['boy', 'girl', 'girl', 'boy', 'girl', 'boy', 'boy']}, index=range(10,17))
print(pd.merge(df2.reset_index(), df1, how='inner').set_index('index'))
yields
col1 col2
index
10 pizza boy
11 pizza girl
16 ice cream boy
The purpose of the reset_index and set_index calls are to preserve df2's index as in the desired result you posted. If the index is not important, then
pd.merge(df2, df1, how='inner')
# col1 col2
# 0 pizza boy
# 1 pizza girl
# 2 ice cream boy
would suffice.
Alternatively, you could construct MultiIndexs out of the col1 and col2 columns, and then call the MultiIndex.isin method:
index1 = pd.MultiIndex.from_arrays([df1[col] for col in ['col1', 'col2']])
index2 = pd.MultiIndex.from_arrays([df2[col] for col in ['col1', 'col2']])
print(df2.loc[index2.isin(index1)])
yields
col1 col2
10 pizza boy
11 pizza girl
16 ice cream boy
Thank you unutbu! Here is a little update.
import pandas as pd
df1 = pd.DataFrame({'col1': ['pizza', 'hamburger', 'hamburger', 'pizza', 'ice cream'], 'col2': ['boy', 'boy', 'girl', 'girl', 'boy']}, index=range(1,6))
df2 = pd.DataFrame({'col1': ['pizza', 'pizza', 'chicken', 'cake', 'cake', 'chicken', 'ice cream'], 'col2': ['boy', 'girl', 'girl', 'boy', 'girl', 'boy', 'boy']}, index=range(10,17))
df1[df1.set_index(['col1','col2']).index.isin(df2.set_index(['col1','col2']).index)]
return:
col1 col2
1 pizza boy
4 pizza girl
5 ice cream boy