Slicing multiple column ranges from a dataframe using iloc

前端 未结 1 624
傲寒
傲寒 2020-12-17 18:03

I have a df with 32 columns

df.shape
(568285, 32)

I am trying to rearrange the columns in a specific way, and drop the first column using

相关标签:
1条回答
  • 2020-12-17 18:32

    You could use the np.r_ indexer.

    class RClass(AxisConcatenator)
     |  Translates slice objects to concatenation along the first axis.
     |  
     |  This is a simple way to build up arrays quickly. There are two use cases.
    

    df = df.iloc[:, np.r_[31, 1:23, 24, 25, 26, 28, 27, 29, 30]]
    

    df
    
         0     1     2     3     4     5     6     7     8     9   ...     40  \
    A  33.0  44.0  68.0  31.0   NaN  87.0  66.0   NaN  72.0  33.0  ...   71.0   
    B   NaN   NaN  77.0  98.0   NaN  48.0  91.0  43.0   NaN  89.0  ...   38.0   
    C  45.0  55.0   NaN  72.0  61.0  87.0   NaN  99.0  96.0  75.0  ...   83.0   
    D   NaN   NaN   NaN  58.0   NaN  97.0  64.0  49.0  52.0  45.0  ...   63.0   
    
         41    42    43    44    45    46    47    48    49  
    A   NaN  87.0  31.0  50.0  48.0  73.0   NaN   NaN  81.0  
    B  79.0  47.0  51.0  99.0  59.0   NaN  72.0  48.0   NaN  
    C  93.0   NaN  95.0  97.0  52.0  99.0  71.0  53.0  69.0  
    D   NaN  41.0   NaN   NaN  55.0  90.0   NaN   NaN  92.0
    
    out = df.iloc[:, np.r_[31, 1:23, 24, 25, 26, 28, 27, 29, 30]]
    out 
         31    1     2     3     4     5     6     7     8     9   ...     20  \
    A  99.0  44.0  68.0  31.0   NaN  87.0  66.0   NaN  72.0  33.0  ...   66.0   
    B  42.0   NaN  77.0  98.0   NaN  48.0  91.0  43.0   NaN  89.0  ...    NaN   
    C  77.0  55.0   NaN  72.0  61.0  87.0   NaN  99.0  96.0  75.0  ...   76.0   
    D  95.0   NaN   NaN  58.0   NaN  97.0  64.0  49.0  52.0  45.0  ...   71.0   
    
         21    22    24    25    26    28    27    29    30  
    A   NaN  40.0  66.0  87.0  97.0  68.0   NaN  68.0   NaN  
    B  95.0   NaN  47.0  79.0  47.0   NaN  83.0  81.0  57.0  
    C   NaN  75.0  46.0  84.0   NaN  50.0  41.0  38.0  52.0  
    D   NaN  74.0  41.0  55.0  60.0   NaN   NaN  84.0   NaN  
    
    0 讨论(0)
提交回复
热议问题