i have two columns age and sex in a pandas dataframe
sex = [\'m\', \'f\' , \'m\', \'f\', \'f\', \'f\', \'f\']
age = [16 , 15 , 14 , 9 , 8 , 2 , 56 ]
<
You could use pandas.DataFrame.where. For example
child.where(age<=9, sex)
df = pd.DataFrame({'sex':['m', 'f' , 'm', 'f', 'f', 'f', 'f'],
'age':[16, 15, 14, 9, 8, 2, 56]})
df['yes'] = df.apply(lambda x: 'child' if x['age'] <= 9 else x['sex'], axis=1)
Result:
age sex yes
0 16 m m
1 15 f f
2 14 m m
3 9 f child
4 8 f child
5 2 f child
6 56 f f
Use numpy.where:
df['col3'] = np.where(df['age'] <= 9, 'child', df['sex'])
The resulting output:
age sex col3
0 16 m m
1 15 f f
2 14 m m
3 9 f child
4 8 f child
5 2 f child
6 56 f f
Timings
Using the following setup to get a larger sample DataFrame:
np.random.seed([3,1415])
n = 10**5
df = pd.DataFrame({'sex': np.random.choice(['m', 'f'], size=n), 'age': np.random.randint(0, 100, size=n)})
I get the following timings:
%timeit np.where(df['age'] <= 9, 'child', df['sex'])
1000 loops, best of 3: 1.26 ms per loop
%timeit df['sex'].where(df['age'] > 9, 'child')
100 loops, best of 3: 3.25 ms per loop
%timeit df.apply(lambda x: 'child' if x['age'] <= 9 else x['sex'], axis=1)
100 loops, best of 3: 3.92 ms per loop