Being fairly new to Rust, I was wondering on how to create a HashMap
with a default value for a key? For example, having a default value 0
for any
What about using entry
to get an element from the HashMap, and then modify it.
From the docs:
fn entry(&mut self, key: K) -> Entry<K, V>
Gets the given key's corresponding entry in the map for in-place manipulation.
example
use std::collections::HashMap;
let mut letters = HashMap::new();
for ch in "a short treatise on fungi".chars() {
let counter = letters.entry(ch).or_insert(0);
*counter += 1;
}
assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);
Answering the problem you have...
I am looking to maintain a counter for a set of keys.
Then you want to look at How to lookup from and insert into a HashMap efficiently?. Hint: *map.entry(key).or_insert(0) += 1
Answering the question you asked...
How does one create a HashMap with a default value in Rust?
No, HashMap
s do not have a place to store a default. Doing so would cause every user of that data structure to allocate space to store it, which would be a waste. You'd also have to handle the case where there is no appropriate default, or when a default cannot be easily created.
Instead, you can look up a value using HashMap::get and provide a default if it's missing using Option::unwrap_or:
use std::collections::HashMap;
fn main() {
let mut map: HashMap<char, usize> = HashMap::new();
map.insert('a', 42);
let a = map.get(&'a').cloned().unwrap_or(0);
let b = map.get(&'b').cloned().unwrap_or(0);
println!("{}, {}", a, b); // 42, 0
}
If unwrap_or
doesn't work for your case, there are several similar functions that might:
Of course, you are welcome to wrap this in a function or a data structure to provide a nicer API.
ArtemGr brings up an interesting point:
in C++ there's a notion of a map inserting a default value when a key is accessed. That always seemed a bit leaky though: what if the type doesn't have a default? Rust is less demanding on the mapped types and more explicit about the presence (or absence) of a key.
Rust adds an additional wrinkle to this. Actually inserting a value would require that simply getting a value can also change the HashMap
. This would invalidate any existing references to values in the HashMap
, as a reallocation might be required. Thus you'd no longer be able to get references to two values at the same time! That would be very restrictive.