How to unset `sharex` or `sharey` from two axes in Matplotlib

后端 未结 3 1329
迷失自我
迷失自我 2020-12-17 01:21

I have a series of subplots, and I want them to share x and y axis in all but 2 subplots (on a per-row basis).

I know that it is possible to create all subplots sepa

相关标签:
3条回答
  • 2020-12-17 01:57

    You can use ax.get_shared_x_axes() to get a Grouper object that contains all the linked axes. Then use group.remove(ax) to remove the specified axis from that group. You can also group.join(ax1, ax2) to add a new share.

    import matplotlib.pyplot as plt
    import numpy as np
    
    fig, ax = plt.subplots(2, 10, sharex='row', sharey='row', squeeze=False)
    
    data = np.random.rand(20, 2, 10)
    for row in [0,1]:
        for col in range(10):
            n = col*(row+1)
            ax[row, col].plot(data[n,0], data[n,1], '.')
    
    a19 = ax[1,9]
    
    shax = a19.get_shared_x_axes()
    shay = a19.get_shared_y_axes()
    shax.remove(a19)
    shay.remove(a19)
    
    a19.clear()
    d19 = data[-1] * 5
    a19.plot(d19[0], d19[1], 'r.')
    
    plt.show()
    

    This still needs a little tweaking to set the ticks, but the bottom-right plot now has its own limits.

    0 讨论(0)
  • 2020-12-17 01:58

    As @zan points out in the their answer, you can use ax.get_shared_x_axes() to obtain a Grouper object that contains all the linked axes, and then .remove any axes from this Grouper. The problem is (as @WMiller points out) that the ticker is still the same for all axes.

    So one will need to

    1. remove the axes from the grouper
    2. set a new Ticker with the respective new locator and formatter

    Complete example

    import matplotlib
    import matplotlib.pyplot as plt
    import numpy as np
    
    fig, axes = plt.subplots(3, 4, sharex='row', sharey='row', squeeze=False)
    
    data = np.random.rand(20, 2, 10)
    
    for ax in axes.flatten()[:-1]:
        ax.plot(*np.random.randn(2,10), marker="o", ls="")
    
    
    
    # Now remove axes[1,5] from the grouper for xaxis
    axes[2,3].get_shared_x_axes().remove(axes[2,3])
    
    # Create and assign new ticker
    xticker = matplotlib.axis.Ticker()
    axes[2,3].xaxis.major = xticker
    
    # The new ticker needs new locator and formatters
    xloc = matplotlib.ticker.AutoLocator()
    xfmt = matplotlib.ticker.ScalarFormatter()
    
    axes[2,3].xaxis.set_major_locator(xloc)
    axes[2,3].xaxis.set_major_formatter(xfmt)
    
    # Now plot to the "ungrouped" axes
    axes[2,3].plot(np.random.randn(10)*100+100, np.linspace(-3,3,10), 
                    marker="o", ls="", color="red")
    
    plt.show()
    

    Note that in the above I only changed the ticker for the x axis and also only for the major ticks. You would need to do the same for the y axis and also for minor ticks in case it's needed.

    0 讨论(0)
  • 2020-12-17 02:01

    You can access the group of shared axes using either ax.get_shared_x_axes() or by the property ax._shared_y_axes. You can then reset the visibility of the labels using xaxis.set_tick_params(which='both', labelleft=True) or using setp(ax, get_xticklabels(), visible=True) however both of these methods suffer from the same innate problem: the tick formatter is still shared between the axes. As far as I know there is no way around this. Here is an example to demonstrate:

    import matplotlib.pyplot as plt
    import numpy as np
    
    np.random.seed(1)
    fig, axs = plt.subplots(2, 2, sharex='row', sharey='row', squeeze=False)
    axs[0][0]._shared_x_axes.remove(axs[0][0])
    axs[0][0]._shared_y_axes.remove(axs[0][0])
    
    for ii in range(2):
        for jj in range(2):
            axs[ii][jj].plot(np.random.randn(100), np.linspace(0,ii+jj+1, 100))
    
    axs[0][1].yaxis.set_tick_params(which='both', labelleft=True)
    axs[0][1].set_yticks(np.linspace(0,2,7))
    plt.show()
    

    0 讨论(0)
提交回复
热议问题