Firstly, sorry if this is a bit lengthy, but I wanted to fully describe what I have having problems with and what I have tried already.
I am trying to join (merge) t
I've just thought of a way to solve this - by combining my two methods:
First, focus on the individual chromosomes, and then loop through the genes in these smaller dataframes. This also doesn't have to make use of any SQL queries either. I've also included a section to immediately identify any redundant genes that don't have any SNPs that fall within their range. This makes use of a double for-loop which I normally try to avoid - but in this case it works quite well.
all_dfs = []
for chromosome in snp_df['chromosome'].unique():
this_chr_snp = snp_df.loc[snp_df['chromosome'] == chromosome]
this_genes = gene_df.loc[gene_df['chromosome'] == chromosome]
# Getting rid of redundant genes
min_bp = this_chr_snp['BP'].min()
max_bp = this_chr_snp['BP'].max()
this_genes = this_genes.loc[~(this_genes['chr_start'] >= max_bp) &
~(this_genes['chr_stop'] <= min_bp)]
for line in this_genes.iterrows():
info = line[1]
this_snp = this_chr_snp.loc[(this_chr_snp['BP'] >= info['chr_start']) &
(this_chr_snp['BP'] <= info['chr_stop'])]
if this_snp.shape[0] != 0:
this_snp = this_snp[['SNP']]
this_snp.insert(1, 'feature_id', info['feature_id'])
all_dfs.append(this_snp)
all_genic_snps = pd.concat(all_dfs)
While this doesn't run spectacularly quickly - it does run so that I can actually get some answers. I'd still like to know if anyone has any tips to make it run more efficiently though.
You can use the following to accomplish what you're looking for:
merged_df=snp_df.merge(gene_df,on=['chromosome'],how='inner')
merged_df=merged_df[(merged_df.BP>=merged_df.chr_start) & (merged_df.BP<=merged_df.chr_stop)][['SNP','feature_id']]
Note: your example dataframes do not meet your join criteria. Here is an example using modified dataframes:
snp_df
Out[193]:
chromosome SNP BP
0 1 rs3094315 752566
1 1 rs3131972 30400
2 1 rs2073814 753474
3 1 rs3115859 754503
4 1 rs3131956 758144
gene_df
Out[194]:
chromosome chr_start chr_stop feature_id
0 1 10954 11507 GeneID:100506145
1 1 12190 13639 GeneID:100652771
2 1 14362 29370 GeneID:653635
3 1 30366 30503 GeneID:100302278
4 1 34611 36081 GeneID:645520
merged_df
Out[195]:
SNP feature_id
8 rs3131972 GeneID:100302278