How can I create a numpy matrix with its elements being a function of its indices?
For example, a multiplication table: a[i,j] = i*j
An Un-numpy and un-
For the multiplication
np.multiply.outer(np.arange(5), np.arange(5)) # a_ij = i * j
and in general
np.frompyfunc(
lambda i, j: f(i, j), 2, 1
).outer(
np.arange(5),
np.arange(5),
).astype(np.float64) # a_ij = f(i, j)
basically you create an np.ufunc
via np.frompyfunc
and then outer
it with the indices.
Speed comparision between the different solutions.
Small matrices:
Eyy![1]: %timeit np.multiply.outer(np.arange(5), np.arange(5))
100000 loops, best of 3: 4.97 µs per loop
Eyy![2]: %timeit np.array( [ [ i*j for j in xrange(5)] for i in xrange(5)] )
100000 loops, best of 3: 5.51 µs per loop
Eyy![3]: %timeit indices = np.indices((5, 5)); indices[0] * indices[1]
100000 loops, best of 3: 16.1 µs per loop
Bigger matrices:
Eyy![4]: %timeit np.multiply.outer(np.arange(4096), np.arange(4096))
10 loops, best of 3: 62.4 ms per loop
Eyy![5]: %timeit indices = np.indices((4096, 4096)); indices[0] * indices[1]
10 loops, best of 3: 165 ms per loop
Eyy![6]: %timeit np.array( [ [ i*j for j in xrange(4096)] for i in xrange(4096)] )
1 loops, best of 3: 1.39 s per loop
Just wanted to add that @Senderle's response can be generalized for any function and dimension:
dims = (3,3,3) #i,j,k
ii = np.indices(dims)
You could then calculate a[i,j,k] = i*j*k
as
a = np.prod(ii,axis=0)
or a[i,j,k] = (i-1)*j*k
:
a = (ii[0,...]-1)*ii[1,...]*ii[2,...]
etc
Here's one way to do that:
>>> indices = numpy.indices((5, 5))
>>> a = indices[0] * indices[1]
>>> a
array([[ 0, 0, 0, 0, 0],
[ 0, 1, 2, 3, 4],
[ 0, 2, 4, 6, 8],
[ 0, 3, 6, 9, 12],
[ 0, 4, 8, 12, 16]])
To further explain, numpy.indices((5, 5))
generates two arrays containing the x and y indices of a 5x5 array like so:
>>> numpy.indices((5, 5))
array([[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],
[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])
When you multiply these two arrays, numpy multiplies the value of the two arrays at each position and returns the result.
I'm away from my python at the moment, but does this one work?
array( [ [ i*j for j in xrange(5)] for i in xrange(5)] )
A generic solution would be to use np.fromfunction()
From the doc:
numpy.fromfunction(function, shape, **kwargs)
Construct an array by executing a function over each coordinate. The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z).
The below line should provide the required matrix.
numpy.fromfunction(lambda i, j: i*j, (5,5))
Output:
array([[ 0., 0., 0., 0., 0.],
[ 0., 1., 2., 3., 4.],
[ 0., 2., 4., 6., 8.],
[ 0., 3., 6., 9., 12.],
[ 0., 4., 8., 12., 16.]])
The first parameter to the function is a callable which is executed for each of the coordinates. If foo
is a function that you pass as the first argument, foo(i,j)
will be the value at (i,j)
. This holds for higher dimensions too. The shape of the coordinate array can be modified using the shape
parameter.