Given two lists, I can produce a list of all permutations the Cartesian Product of these two lists:
permute :: [a] -> [a] -> [[a]]
per
If you want to have more control over the output, you can use a list as applicative functor, e.g.:
(\x y z -> [x,y,z]) <$> [1,2] <*> [4,5] <*> [6,7]
Let's say you want a list of tuples instead:
(\x y z -> (x,y,z)) <$> [1,2] <*> [4,5] <*> [6,7]
And it looks kind of cool, too...
Prelude> sequence [[1,2],[3,4],[5,6]]
[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]
As a supplement to jleedev's answer (couldn't format this in the comments):
A quick unchecked substitution of list functions for monadic ones:
sequence ms = foldr k (return []) ms
where
k m m' = do { x <- m; xs <- m'; return (x:xs) }
....
k m m' = m >>= \x -> m' >>= \xs -> [x:xs]
k m m' = flip concatMap m $ \x -> flip concatMap m' $ \xs -> [x:xs]
k m m' = concatMap (\x -> concatMap (\xs -> [x:xs]) m') m
....
sequence ms = foldr k ([[]]) ms
where
k m m' = concatMap (\x -> concatMap (\xs -> [x:xs]) m') m
Here is my way of implementing it simply, using only list comprehensions.
crossProduct :: [[a]] -> [[a]]
crossProduct (axis:[]) = [ [v] | v <- axis ]
crossProduct (axis:rest) = [ v:r | v <- axis, r <- crossProduct rest ]
I found Eric Lippert's article on computing Cartesian product with LINQ quite helpful in improving my understanding of what was going on. Here's a more-or-less direct translation:
cartesianProduct :: [[a]] -> [[a]]
cartesianProduct sequences = foldr aggregator [[]] sequences
where aggregator sequence accumulator =
[ item:accseq |item <- sequence, accseq <- accumulator ]
Or with more "Haskell-y" terse, meaningless parameter names ;)
cartesianProduct = foldr f [[]]
where f l a = [ x:xs | x <- l, xs <- a ]
This winds up being quite similar to sclv posted after all.
You can do that in 2 ways:
cp :: [[a]] -> [[a]]
cp [] = [[]]
cp (xs:xss) = [ x:ys | x <- xs, ys <- cp xss ]
cp1 :: [[a]] -> [[a]]
cp1 xs = foldr f [[]] xs
where f xs xss = [x:ys | x <- xs, ys <- xss]