What would be an elegant and pythonic way to implement cumsum?
Alternatively - if there\'a already a built-in way to do it, that would be even better of course...
in place:
a=[1,2,3,4,5]
def cumsum(a):
for i in range(1,len(a)):
a[i]+=a[i-1]
cumsum(a)
print a
"[1, 3, 6, 10, 15]"
I have updated @GrantJ 's answer and have timed everything with Python 3 in Jupyter. I have added in the following simple accumulate
example:
def cumsum_acc(iterable):
return accumulate(iterable)
The timings show that this approach is the fastest:
reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), values_ten, ([], 0))[0]
Average: 4.18553415873987e-06
reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), values_mil, ([], 0))[0]
Average: 0.4559302114011018
reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), values_ten, [0])[1:]
Average: 3.3726942356950078e-06
reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), values_mil, [0])[1:]
Average: 0.4217967894903154
cumsum_rking(values_ten)
Average: 2.2734952410773416e-06
cumsum_rking(values_mil)
Average: 0.24106813411868303
list(cumsum_larsmans(values_ten))
Average: 1.5819200433296032e-06
list(cumsum_larsmans(values_mil))
Average: 0.17061943569953542
list(cumsum_acc(values_ten))
Average: 9.456979988264607e-07
list(cumsum_acc(values_mil))
Average: 0.11057746014014924
The code behind it (by GrantJ, modified for Python 3):
from timeit import timeit
from itertools import accumulate
from functools import reduce
def bmark(prog, setup, number):
duration = timeit(prog, setup=setup, number=number)
print(prog)
print('Average:', duration / number)
values_ten = list(range(10))
values_mil = list(range(1000000))
from operator import iadd
bmark('reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), \
values_ten, ([], 0))[0]',
setup='from __main__ import iadd, reduce, values_ten', number=1000000)
bmark('reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), \
values_mil, ([], 0))[0]',
setup='from __main__ import iadd, reduce, values_mil', number=10)
bmark('reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), \
values_ten, [0])[1:]',
setup='from __main__ import iadd, reduce, values_ten', number=1000000)
bmark('reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), \
values_mil, [0])[1:]',
setup='from __main__ import iadd, reduce, values_mil', number=10)
def cumsum_rking(iterable):
values = list(iterable)
for pos in range(1, len(values)):
values[pos] += values[pos - 1]
return values
bmark('cumsum_rking(values_ten)',
setup='from __main__ import cumsum_rking, values_ten', number=1000000)
bmark('cumsum_rking(values_mil)',
setup='from __main__ import cumsum_rking, values_mil', number=10)
def cumsum_larsmans(iterable):
total = 0
for value in iterable:
total += value
yield total
bmark('list(cumsum_larsmans(values_ten))',
setup='from __main__ import cumsum_larsmans, values_ten', number=1000000)
bmark('list(cumsum_larsmans(values_mil))',
setup='from __main__ import cumsum_larsmans, values_mil', number=10)
def cumsum_acc(iterable):
return accumulate(iterable)
bmark('list(cumsum_acc(values_ten))',
setup='from __main__ import cumsum_acc, accumulate, values_ten', number=1000000)
bmark('list(cumsum_acc(values_mil))',
setup='from __main__ import cumsum_acc, accumulate, values_mil', number=10)
Starting Python 3.8
, and the introduction of assignment expressions (PEP 572) (:=
operator), we can use and increment a variable within a list comprehension:
total = 0
[total := total + x for x in [1, 2, 3 ,4, 5]]
# [1, 3, 6, 10, 15]
This:
total
to 0
which symbolizes the cumulative sumtotal
with the current looped item (total := total + x
) via an assignment expressionx
to the new value of total
for loops are pythonic
def cumsum(vec):
r = [vec[0]]
for val in vec[1:]:
r.append(r[-1] + val)
return r
def cumsum(a):
return map(lambda x: sum( a[0:x+1] ), range( 0, len(a) ))
cumsum([1,2,3])
> [1, 3, 6]
a=[1,2,3,4,5]
def cumsum(a):
a=iter(a)
cc=[next(a)]
for i in a:
cc.append(cc[-1]+i)
return cc
print cumsum(a)
"[1, 3, 6, 10, 15]"