In my template-ized function, I\'m trying to check the type T is of a specific type. How would I do that?
p/s I knew the template specification way but I don\'t want
I suspect someone should tell you why it might not be a good idea to avoid using overloading or specialization. Consider:
template<class T> int foo(T a) {
if(isAString<T>()) {
return a.length();
} else {
return a;
}
}
You might think on a first sight that it will work for int
too, because it will only try to call length
for strings. But that intuition is wrong: The compiler still checks the string branch, even if that branch is not taken at runtime. And it will find you are trying to call a member function on non-classes if T
is an int.
That's why you should separate the code if you need different behavior. But better use overloading instead of specialization, since it's easier to get a clue how things work with it.
template<class T> int foo(T a) {
return a;
}
int foo(std::string const& a) {
return a.length();
}
You have also better separated the code for different paths of behavior. It's not all anymore clued together. Notice that with overloading, the parameters may have different type forms and the compiler will still use the correct version if both match equally well, as is the case here: One can be a reference, while the other can not.
You can check using type_traits (available in Boost and TR1) (e.g. is_same
or is_convertible
) if you really want to avoid specialization.
hmm because I had a large portion of same code until the 'specification' part.
You can use overloading, but if a large part of the code would work for any type, you might consider extracting the differing part into a separate function and overload that.
template <class T>
void specific(const T&);
void specific(const std::string&);
template <class T>
void something(const T& t)
{
//code that works on all types
specific(t);
//more code that works on all types
}
I suppose you could use the std::type_info returned by the typeid operator
If you are using C++11 or later, std::is_same does exactly what you want:
template <typename T>
constexpr bool IsFloat() { return std::is_same<T, float>::value; }
template <typename T>
void SomeMethodName() {
if (IsFloat<T>()) {
...
}
}
http://en.cppreference.com/w/cpp/types/is_same
If you don't care about compile-time, you may use boost::is_same.
bool isString = boost::is_same<T, std::string>::value;
As of C++11, this is now part of the standard library
bool isString = std::is_same<T, std::string>::value