I\'ve looked around and still couldn\'t find anything to help me really! I\'ve written a program to calculate the distance between 2 cities using their Latitudes and Longitu
Using boost.geometry
typedef boost::geometry::model::point<
double, 2, boost::geometry::cs::spherical_equatorial<boost::geometry::degree>
> spherical_point;
spherical_point p(lon1_degree, lat1_degree);
spherical_point q(lon2_degree, lat2_degree);
double dist = boost::geometry::distance(p, q);
double const earth_radius = 6371.0; // Km
double dist_km = dist*earth_radius;
As it is said, Haversine formula is your answer:
#include <math.h>
#include <cmath>
#define earthRadiusKm 6371.0
// This function converts decimal degrees to radians
double deg2rad(double deg) {
return (deg * M_PI / 180);
}
// This function converts radians to decimal degrees
double rad2deg(double rad) {
return (rad * 180 / M_PI);
}
/**
* Returns the distance between two points on the Earth.
* Direct translation from http://en.wikipedia.org/wiki/Haversine_formula
* @param lat1d Latitude of the first point in degrees
* @param lon1d Longitude of the first point in degrees
* @param lat2d Latitude of the second point in degrees
* @param lon2d Longitude of the second point in degrees
* @return The distance between the two points in kilometers
*/
double distanceEarth(double lat1d, double lon1d, double lat2d, double lon2d) {
double lat1r, lon1r, lat2r, lon2r, u, v;
lat1r = deg2rad(lat1d);
lon1r = deg2rad(lon1d);
lat2r = deg2rad(lat2d);
lon2r = deg2rad(lon2d);
u = sin((lat2r - lat1r)/2);
v = sin((lon2r - lon1r)/2);
return 2.0 * earthRadiusKm * asin(sqrt(u * u + cos(lat1r) * cos(lat2r) * v * v));
}
This is the method that I would use for finding the distance
Or this, not concidering the "bend" of the Earth
for people who need in swift:
// Haversine formula:
func deg2rad(_ deg: Double) ->Double {
return deg * Double.pi / 180.0
}
func distanceEarth(lat1d: Double, lon1d: Double, lat2d: Double, lon2d: Double) ->Double {
let earthRadiusKm = 6371.0
let lat1r = deg2rad(lat1d);
let lon1r = deg2rad(lon1d);
let lat2r = deg2rad(lat2d);
let lon2r = deg2rad(lon2d);
let u = sin((lat2r - lat1r)/2);
let v = sin((lon2r - lon1r)/2);
return 2.0 * earthRadiusKm * asin(sqrt(u * u + cos(lat1r) * cos(lat2r) * v * v));
}
//test here.... https://andrew.hedges.name/experiments/haversine/
func doTestHaversine(){
let km = distanceEarth(lat1d: 38.898556, lon1d: -77.037852, lat2d: 38.897147, lon2d: -77.043934)
print(km) // should show : 0.549 or similar..
}