Extract artwork from table game card image with OpenCV

前端 未结 3 416
星月不相逢
星月不相逢 2020-12-16 01:27

I wrote a small script in python where I\'m trying to extract or crop the part of the playing card that represents the artwork only, removing all the rest. I\'ve been trying

相关标签:
3条回答
  • 2020-12-16 01:52

    We know that cards have straight boundaries along the x and y axes. We can use this to extract parts of the image. The following code implements detecting horizontal and vertical lines in the image.

    import cv2
    import numpy as np
    
    def mouse_callback(event, x, y, flags, params):
        global num_click
        if num_click < 2 and event == cv2.EVENT_LBUTTONDOWN:
            num_click = num_click + 1
            print(num_click)
            global upper_bound, lower_bound, left_bound, right_bound
            upper_bound.append(max(i for i in hor if i < y) + 1)
            lower_bound.append(min(i for i in hor if i > y) - 1)
            left_bound.append(max(i for i in ver if i < x) + 1)
            right_bound.append(min(i for i in ver if i > x) - 1)
    
    filename = 'image.png'
    thr = 100  # edge detection threshold
    lined = 50  # number of consequtive True pixels required an axis to be counted as line
    num_click = 0  # select only twice
    upper_bound, lower_bound, left_bound, right_bound = [], [], [], []
    winname = 'img'
    
    cv2.namedWindow(winname)
    cv2.setMouseCallback(winname, mouse_callback)
    
    img = cv2.imread(filename, 1)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    bw = cv2.Canny(gray, thr, 3*thr)
    
    height, width, _ = img.shape
    
    # find horizontal lines
    hor = []
    for i in range (0, height-1):
        count = 0
        for j in range (0, width-1):
            if bw[i,j]:
                count = count + 1
            else:
                count = 0
            if count >= lined:
                hor.append(i)
                break
    
    # find vertical lines
    ver = []
    for j in range (0, width-1):
        count = 0
        for i in range (0, height-1):
            if bw[i,j]:
                count = count + 1
            else:
                count = 0
            if count >= lined:
                ver.append(j)
                break
    
    # draw lines
    disp_img = np.copy(img)
    for i in hor:
        cv2.line(disp_img, (0, i), (width-1, i), (0,0,255), 1)
    for i in ver:
        cv2.line(disp_img, (i, 0), (i, height-1), (0,0,255), 1)
    
    while num_click < 2:
        cv2.imshow(winname, disp_img)
        cv2.waitKey(10)
    disp_img = img[min(upper_bound):max(lower_bound), min(left_bound):max(right_bound)]
    cv2.imshow(winname, disp_img)
    cv2.waitKey()   # Press any key to exit
    cv2.destroyAllWindows()
    

    You just need to click two areas to include. A sample click area and the corresponding result are as follows:

    Results from other images:

    0 讨论(0)
  • 2020-12-16 01:53

    I used Hough line transform to detect linear parts of the image. The crossings of all lines were used to construct all possible rectangles, which do not contain other crossing points. Since the part of the card you are looking for is always the biggest of those rectangles (at least in the samples you provided), i simply chose the biggest of those rectangles as winner. The script works without user interaction.

    import cv2
    import numpy as np
    from collections import defaultdict
    
    def segment_by_angle_kmeans(lines, k=2, **kwargs):
        #Groups lines based on angle with k-means.
        #Uses k-means on the coordinates of the angle on the unit circle 
        #to segment `k` angles inside `lines`.
    
        # Define criteria = (type, max_iter, epsilon)
        default_criteria_type = cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER
        criteria = kwargs.get('criteria', (default_criteria_type, 10, 1.0))
        flags = kwargs.get('flags', cv2.KMEANS_RANDOM_CENTERS)
        attempts = kwargs.get('attempts', 10)
    
        # returns angles in [0, pi] in radians
        angles = np.array([line[0][1] for line in lines])
        # multiply the angles by two and find coordinates of that angle
        pts = np.array([[np.cos(2*angle), np.sin(2*angle)]
                        for angle in angles], dtype=np.float32)
    
        # run kmeans on the coords
        labels, centers = cv2.kmeans(pts, k, None, criteria, attempts, flags)[1:]
        labels = labels.reshape(-1)  # transpose to row vec
    
        # segment lines based on their kmeans label
        segmented = defaultdict(list)
        for i, line in zip(range(len(lines)), lines):
            segmented[labels[i]].append(line)
        segmented = list(segmented.values())
        return segmented
    
    def intersection(line1, line2):
        #Finds the intersection of two lines given in Hesse normal form.
        #Returns closest integer pixel locations.
        #See https://stackoverflow.com/a/383527/5087436
    
        rho1, theta1 = line1[0]
        rho2, theta2 = line2[0]
    
        A = np.array([
            [np.cos(theta1), np.sin(theta1)],
            [np.cos(theta2), np.sin(theta2)]
        ])
        b = np.array([[rho1], [rho2]])
        x0, y0 = np.linalg.solve(A, b)
        x0, y0 = int(np.round(x0)), int(np.round(y0))
        return [[x0, y0]]
    
    
    def segmented_intersections(lines):
        #Finds the intersections between groups of lines.
    
        intersections = []
        for i, group in enumerate(lines[:-1]):
            for next_group in lines[i+1:]:
                for line1 in group:
                    for line2 in next_group:
                        intersections.append(intersection(line1, line2)) 
        return intersections
    
    def rect_from_crossings(crossings):
        #find all rectangles without other points inside
        rectangles = []
    
        # Search all possible rectangles
        for i in range(len(crossings)):
            x1= int(crossings[i][0][0])
            y1= int(crossings[i][0][1])
    
            for j in range(len(crossings)):
                x2= int(crossings[j][0][0])
                y2= int(crossings[j][0][1])
    
                #Search all points
                flag = 1
                for k in range(len(crossings)):
                    x3= int(crossings[k][0][0])
                    y3= int(crossings[k][0][1])
    
                    #Dont count double (reverse rectangles)
                    if (x1 > x2 or y1 > y2):
                        flag = 0
                    #Dont count rectangles with points inside   
                    elif ((((x3 >= x1) and (x2 >= x3))and (y3 > y1) and (y2 > y3) or ((x3 > x1) and (x2 > x3))and (y3 >= y1) and (y2 >= y3))):    
                        if(i!=k and j!=k):    
                            flag = 0
    
                if flag:
                    rectangles.append([[x1,y1],[x2,y2]])
    
        return rectangles
    
    if __name__ == '__main__':
        #img = cv2.imread('TAJFp.jpg')
        #img = cv2.imread('Bj2uu.jpg')
        img = cv2.imread('yi8db.png')
    
        width = int(img.shape[1])
        height = int(img.shape[0])
    
        scale = 380/width
        dim = (int(width*scale), int(height*scale))
        # resize image
        img = cv2.resize(img, dim, interpolation = cv2.INTER_AREA) 
    
        img2 = img.copy()
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        gray = cv2.GaussianBlur(gray,(5,5),cv2.BORDER_DEFAULT)
    
        # Parameters of Canny and Hough may have to be tweaked to work for as many cards as possible
        edges = cv2.Canny(gray,10,45,apertureSize = 7)
        lines = cv2.HoughLines(edges,1,np.pi/90,160)
    
        segmented = segment_by_angle_kmeans(lines)
        crossings = segmented_intersections(segmented)
        rectangles = rect_from_crossings(crossings)
    
        #Find biggest remaining rectangle
        size = 0
        for i in range(len(rectangles)):
            x1 = rectangles[i][0][0]
            x2 = rectangles[i][1][0]
            y1 = rectangles[i][0][1]
            y2 = rectangles[i][1][1]
    
            if(size < (abs(x1-x2)*abs(y1-y2))):
                size = abs(x1-x2)*abs(y1-y2)
                x1_rect = x1
                x2_rect = x2
                y1_rect = y1
                y2_rect = y2
    
        cv2.rectangle(img2, (x1_rect,y1_rect), (x2_rect,y2_rect), (0,0,255), 2)
        roi = img[y1_rect:y2_rect, x1_rect:x2_rect]
    
        cv2.imshow("Output",roi)
        cv2.imwrite("Output.png", roi)
        cv2.waitKey()
    

    These are the results with the samples you provided:

    The code for finding line crossings can be found here: find intersection point of two lines drawn using houghlines opencv

    You can read more about Hough Lines here.

    0 讨论(0)
  • 2020-12-16 02:14

    I don't think it is possible to automatically crop the artwork ROI using traditional image processing techniques due to the dynamic nature of the colors, dimensions, locations, and textures for each card. You would have to look into machine/deep learning and train your own classifier if you want to do it automatically. Instead, here's a manual approach to select and crop a static ROI from an image.

    The idea is to use cv2.setMouseCallback() and event handlers to detect if the mouse has been clicked or released. For this implementation, you can extract the artwork ROI by holding down the left mouse button and dragging to select the desired ROI. Once you have selected the desired ROI, press c to crop and save the ROI. You can reset the ROI using the right mouse button.

    Saved artwork ROIs

    Code

    import cv2
    
    class ExtractArtworkROI(object):
        def __init__(self):
            # Load image
            self.original_image = cv2.imread('1.png')
            self.clone = self.original_image.copy()
            cv2.namedWindow('image')
            cv2.setMouseCallback('image', self.extractROI)
            self.selected_ROI = False
    
            # ROI bounding box reference points
            self.image_coordinates = []
    
        def extractROI(self, event, x, y, flags, parameters):
            # Record starting (x,y) coordinates on left mouse button click
            if event == cv2.EVENT_LBUTTONDOWN:
                self.image_coordinates = [(x,y)]
    
            # Record ending (x,y) coordintes on left mouse button release
            elif event == cv2.EVENT_LBUTTONUP:
                # Remove old bounding box
                if self.selected_ROI:
                    self.clone = self.original_image.copy()
    
                # Draw rectangle 
                self.selected_ROI = True
                self.image_coordinates.append((x,y))
                cv2.rectangle(self.clone, self.image_coordinates[0], self.image_coordinates[1], (36,255,12), 2)
    
                print('top left: {}, bottom right: {}'.format(self.image_coordinates[0], self.image_coordinates[1]))
                print('x,y,w,h : ({}, {}, {}, {})'.format(self.image_coordinates[0][0], self.image_coordinates[0][1], self.image_coordinates[1][0] - self.image_coordinates[0][0], self.image_coordinates[1][1] - self.image_coordinates[0][1]))
    
            # Clear drawing boxes on right mouse button click
            elif event == cv2.EVENT_RBUTTONDOWN:
                self.selected_ROI = False
                self.clone = self.original_image.copy()
    
        def show_image(self):
            return self.clone
    
        def crop_ROI(self):
            if self.selected_ROI:
                x1 = self.image_coordinates[0][0]
                y1 = self.image_coordinates[0][1]
                x2 = self.image_coordinates[1][0]
                y2 = self.image_coordinates[1][1]
    
                # Extract ROI
                self.cropped_image = self.original_image.copy()[y1:y2, x1:x2]
    
                # Display and save image
                cv2.imshow('Cropped Image', self.cropped_image)
                cv2.imwrite('ROI.png', self.cropped_image)
            else:
                print('Select ROI before cropping!')
    
    if __name__ == '__main__':
        extractArtworkROI = ExtractArtworkROI()
        while True:
            cv2.imshow('image', extractArtworkROI.show_image())
            key = cv2.waitKey(1)
    
            # Close program with keyboard 'q'
            if key == ord('q'):
                cv2.destroyAllWindows()
                exit(1)
    
            # Crop ROI
            if key == ord('c'):
                extractArtworkROI.crop_ROI()
    
    0 讨论(0)
提交回复
热议问题