Joining Multiple Dataframes with Pandas with overlapping Column Names?

后端 未结 2 901
囚心锁ツ
囚心锁ツ 2020-12-16 00:27

I have multiple (more than 2) dataframes I would like to merge. They all share the same value column:

In [431]: [x.head() for x in data]
Out[431]: 
[                 


        
相关标签:
2条回答
  • 2020-12-16 01:17
    In [65]: pd.concat(data, axis=1)
    Out[65]:
                         AvgStatisticData  AvgStatisticData  AvgStatisticData  AvgStatisticData
    2012-10-14 14:00:00         39.335996         47.854712         54.171233         65.813114
    2012-10-14 15:00:00         40.210110         55.041512         48.718387         71.397868
    2012-10-14 16:00:00         48.282816         55.488026         59.978616         76.213973
    2012-10-14 17:00:00         40.593039         51.688483         50.984514         72.729002
    2012-10-14 18:00:00         40.952014         57.916672         54.924745         73.196415
    
    0 讨论(0)
  • 2020-12-16 01:22

    I would try pandas.merge using the suffixes= option.

    import pandas as pd
    import datetime as dt
    
    df_1 = pd.DataFrame({'x' : [dt.datetime(2012,10,21) + dt.timedelta(n) for n in range(10)], 'y' : range(10)})
    df_2 = pd.DataFrame({'x' : [dt.datetime(2012,10,21) + dt.timedelta(n) for n in range(10)], 'y' : range(10)})
    df = pd.merge(df_1, df_2, on='x', suffixes=['_1', '_2'])
    

    I am interested to see if the experts have a more algorithmic approach to merge a list of data frames.

    0 讨论(0)
提交回复
热议问题