I have multiple (more than 2) dataframes I would like to merge. They all share the same value column:
In [431]: [x.head() for x in data]
Out[431]:
[
In [65]: pd.concat(data, axis=1)
Out[65]:
AvgStatisticData AvgStatisticData AvgStatisticData AvgStatisticData
2012-10-14 14:00:00 39.335996 47.854712 54.171233 65.813114
2012-10-14 15:00:00 40.210110 55.041512 48.718387 71.397868
2012-10-14 16:00:00 48.282816 55.488026 59.978616 76.213973
2012-10-14 17:00:00 40.593039 51.688483 50.984514 72.729002
2012-10-14 18:00:00 40.952014 57.916672 54.924745 73.196415
I would try pandas.merge
using the suffixes=
option.
import pandas as pd
import datetime as dt
df_1 = pd.DataFrame({'x' : [dt.datetime(2012,10,21) + dt.timedelta(n) for n in range(10)], 'y' : range(10)})
df_2 = pd.DataFrame({'x' : [dt.datetime(2012,10,21) + dt.timedelta(n) for n in range(10)], 'y' : range(10)})
df = pd.merge(df_1, df_2, on='x', suffixes=['_1', '_2'])
I am interested to see if the experts have a more algorithmic approach to merge a list of data frames.