How do I generate 30 random numbers between 1-9, that all add up to 200 (or some arbitrary N), in C#?
I\'m trying to generate a string of digits that can add togethe
So I have to ask: Is there an actual purpose for this, or is it just an exercise or homework assignment? There is a lot of work going on to prevent "bias". Is this an actual requirement, or will any fairly random solution do? Without knowing the requirements it's really easy to waste a lot of time. If this is a real problem, please explain what the actual requirements are.
If you want an unbiased algorithm then the naive implementation is something like:
while (true) {
numbers = [];
total = 0;
for (i = 0; i < COUNT; ++i) {
next = rand(BOUNDS);
total += next;
numbers.push(next);
}
if (total == TARGET) {
return numbers;
}
}
This is non-terminating and slow but it is not biased. If you want a unbiased algorithm I'm not convinced the algorithms posted here are unbiased.
There is no guarrentee that 30 random numbers from 1-9 would add up to any specific N.
What you can find is a list of numbers which will add up to N and are bounded from 1-9 but the number will not be 30 necessarily. I believe the minimum number of numbers you need is 23, being (22*9) + 2. The maximum of course will be 200 (200*1). So the length of the list is somewhere inside [23,200]. The chances that a random list may be length 30 is thus quite low. If all list lengths are obtainable (i think they are) your chances in the long run at about 0.5%.
I'm not sure what the statistics are on this but, the issue here is that you don't want to randomly select a number that makes it impossible to sum N with M number of entries either by overshooting or undershooting. Here's how I would do it:
static void Main()
{
int count = 30;
int[] numbers = getNumbers(count, 155);
for (int index = 0; index < count; index++)
{
Console.Write(numbers[index]);
if ((index + 1) % 10 == 0)
Console.WriteLine("");
else if (index != count - 1)
Console.Write(",");
}
Console.ReadKey();
}
static int[] getNumbers(int count, int total)
{
const int LOWERBOUND = 1;
const int UPPERBOUND = 9;
int[] result = new int[count];
int currentsum = 0;
int low, high, calc;
if((UPPERBOUND * count) < total ||
(LOWERBOUND * count) > total ||
UPPERBOUND < LOWERBOUND)
throw new Exception("Not possible.");
Random rnd = new Random();
for (int index = 0; index < count; index++)
{
calc = (total - currentsum) - (UPPERBOUND * (count - 1 - index));
low = calc < LOWERBOUND ? LOWERBOUND : calc;
calc = (total - currentsum) - (LOWERBOUND * (count - 1 - index));
high = calc > UPPERBOUND ? UPPERBOUND : calc;
result[index] = rnd.Next(low, high + 1);
currentsum += result[index];
}
// The tail numbers will tend to drift higher or lower so we should shuffle to compensate somewhat.
int shuffleCount = rnd.Next(count * 5, count * 10);
while (shuffleCount-- > 0)
swap(ref result[rnd.Next(0, count)], ref result[rnd.Next(0, count)]);
return result;
}
public static void swap(ref int item1, ref int item2)
{
int temp = item1;
item1 = item2;
item2 = temp;
}
I didn't have a lot of time to test this so apologies if there's a flaw in my logic somewhere.
EDIT:
I did some testing and everything seems solid. If you want a nice pretty spread it looks like you want something along the lines of Total = Count * ((UPPER + LOWER) / 2)
. Although I'm fairly certain that as the difference between UPPER
and LOWER
increases the more flexible this becomes.