I have a bunch of data frames with different variables. I want to read them into R and add columns to those that are short of a few variables so that they all have a common
Another option that does not require creating a helper function (or an already complete data.frame) using tibble's add_column
:
library(tibble)
cols <- c(top_speed = NA_real_, nhj = NA_real_, mpg = NA_real_)
add_column(mtcars, !!!cols[setdiff(names(cols), names(mtcars))])
Try the following,
library(tidyverse)
mtcars %>%
tbl_df() %>%
rownames_to_column("car") %>%
mutate(top_speed = if ("top_speed" %in% names(.)){return(top_speed)}else{return(NA)},
mpg = if ("mpg" %in% names(.)){return(mpg)}else{return(NA)}) %>%
select(car, top_speed, mpg, everything())
# A tibble: 32 x 13
car top_speed mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Mazda RX4 NA 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
2 Mazda RX4 Wag NA 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
3 Datsun 710 NA 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
4 Hornet 4 Drive NA 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
5 Hornet Sportabout NA 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
6 Valiant NA 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
7 Duster 360 NA 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
8 Merc 240D NA 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
9 Merc 230 NA 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
10 Merc 280 NA 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
# ... with 22 more rows
I think the ifelse() doesn't inherit the class from the object.
If you already have a dataframe with all the required columns, say
library(tidyverse)
df_with_required_columns =
mtcars %>%
mutate(top_speed = NA_real_) %>%
select(top_speed, mpg)
then you can simply bind_rows
filtering out all the rows:
mtcars %>%
rownames_to_column("car") %>%
bind_rows( df_with_required_columns %>% filter(F) ) %>%
select(car, top_speed, mpg, everything())
Note that missing columns will take the type from df_with_required_columns
.
You can use the rowwise
function like this :
library(tidyverse)
mtcars %>%
tbl_df() %>%
rownames_to_column("car") %>%
rowwise() %>%
mutate(top_speed = ifelse("top_speed" %in% names(.), top_speed, NA),
mpg = ifelse("mpg" %in% names(.), mpg, NA)) %>%
select(car, top_speed, mpg, everything())
We could create a helper function to create the column
fncols <- function(data, cname) {
add <-cname[!cname%in%names(data)]
if(length(add)!=0) data[add] <- NA
data
}
fncols(mtcars, "mpg")
fncols(mtcars, c("topspeed","nhj","mpg"))
If you had an empty dataframe that contains all the names to check for, you can use bind_rows
to add columns.
I used purrr:map_dfr
to make the empty tibble
with the appropriate column names.
columns = c("top_speed", "mpg") %>%
map_dfr( ~tibble(!!.x := logical() ) )
# A tibble: 0 x 2
# ... with 2 variables: top_speed <lgl>, mpg <lgl>
bind_rows(columns, mtcars)
# A tibble: 32 x 12
top_speed mpg cyl disp hp drat wt qsec vs am gear carb
<lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 NA 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
2 NA 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
3 NA 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1