For a library, I\'d like a function to accept another function and its arguments, then store them all for calling later. The arguments must allow for any mixture of types, b
You could use lambda functions to hide the bindings:
#include <functional>
class DelayedCaller : public std::function< void(void) > {
public:
DelayedCaller(std::function< void(void) > fn)
: std::function< void(void) >(fn) {}
};
DelayedCaller caller1([]() { myFunc1(123, 45.6); });
DelayedCaller caller2([]() { myFunc2("A string"); });
caller1(); // Calls myFunc1(), with arguments 123 and 45.6
caller2(); // Calls myFunc2(), with argument "A string"
This also gives your library's users more flexibility. They're not limited to a single function call and the functions have access to the original environment they were created in:
int x;
DelayedCaller caller3 = [&x]() {
if (x == 0)
DoSomething();
else
DoSomethingElse();
};
If you want/are able to make use of the C++11 future library you can use std::async
#include <future>
auto caller = std::async(myFunc1, 123, 45.6); // Creates a future object.
caller.get(); // Waits for the function to get executed and returns result.
To force lazy evaluation use:
auto caller = std::async(std::launch::deferred, myFunc1, 123, 45.6);
Also this has the advantage that the function call might be executed on a different thread which makes use of multicore hardware. However this may not be suitable in every case.
If your only concern is to hide the argument binding from the callsite while keeping your interface, use variadic templates
class DelayedCaller
{
public:
template<typename... Args>
static DelayedCaller* setup(void (functionPtr*)(Args...), Args&&... args)
{
return new DelayedCaller(std::bind(functionPtr, std::forward<Args>(args)...));
}
DelayedCaller(const std::function<void()>& f) : f(f) {}
private:
std::function<void()> f;
};
The public constructor still offers your users the possibility to initialize it with a lambda is they wish.
An possibility is to use variadic templates and call std::bind() from within the setup()
function:
#include <iostream>
#include <string>
#include <functional>
#include <memory>
void myFunc1(int arg1, float arg2)
{
std::cout << arg1 << ", " << arg2 << '\n';
}
void myFunc2(const char *arg1)
{
std::cout << arg1 << '\n';
}
class DelayedCaller
{
public:
template <typename TFunction, typename... TArgs>
static std::unique_ptr<DelayedCaller> setup(TFunction&& a_func,
TArgs&&... a_args)
{
return std::unique_ptr<DelayedCaller>(new DelayedCaller(
std::bind(std::forward<TFunction>(a_func),
std::forward<TArgs>(a_args)...)));
}
void call() const { func_(); }
private:
using func_type = std::function<void()>;
DelayedCaller(func_type&& a_ft) : func_(std::forward<func_type>(a_ft)) {}
func_type func_;
};
int main()
{
auto caller1(DelayedCaller::setup(&myFunc1, 123, 45.6));
auto caller2(DelayedCaller::setup(&myFunc2, "A string"));
caller1->call();
caller2->call();
return 0;
}
Output:
123, 45.6 A string
Return a smart pointer, such as std::unique_ptr, instead of returning a raw pointer (or return by value and avoid dynamic allocation. The func_type
is moveable if the arguments are moveable, or it may be quite cheap to copy anyway. You may need to define the move constructor and move assignment operator, they are generated under certain conditions).