For example, with elements a,b,c,d
, there are 5 possible ways to take neighboring elements and reduce them into a single element, where exactly two elements mus
Use recursion
for each balanced expression of n-1 parentheses
for each pos i from 0 to m of an expression
add '('
for each pos j from i + 1 to m
add ')' if expression is balanced
The order you will get is the following:
n=0:
n=1: ()
n=2: []() , [()]
n=3: {}[]() , {[]}() , {[]()} , {}[()] , {[()]}
Here I'm changing the parens each time (,[,{
to highlight how the algorithm works.
The initial left parenthesis has a unique matching right parenthesis such that what is between the two parentheses and what comes after are both valid expressions. This leads to a simple recursive solution here expressed in Scala.
def catalan(n: Int): List[String] =
if (n == 0) List("")
else
for {
k <- (0 to n - 1).toList
first <- catalan(k)
rest <- catalan(n - 1 - k)
} yield "a" + first + "b" + rest
Here I'm using "a" for left parenthesis and "b" for right parenthesis.
catalan(0) List()
catalan(1) List(ab)
catalan(2) List(abab, aabb)
catalan(3) List(ababab, abaabb, aabbab, aababb, aaabbb)
catalan(5).size 42
*
**Run this to generate all balanced parantheses:
//sudosuhan
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#define MAX_SIZE 200
void _printParenthesis(int pos, int n1, int open1, int close1, int n2, int open2, int close2, int n3, int open3, int close3);
void printParenthesis(int n1 , int n2 , int n3 )
{
if(n1 > 0 || n2 > 0 || n3 > 0)
_printParenthesis(0, n1, 0, 0, n2, 0, 0, n3, 0, 0);
return;
}
void _printParenthesis(int pos, int n1, int open1, int close1, int n2, int open2, int close2, int n3, int open3, int close3)
{
static char str[MAX_SIZE];
if(close1 == n1 && close2 == n2 && close3 == n3 )
{
printf("%s \n", str);
return;
}
else
{
bool run1 = open1 > close1;
bool run2 = open2 > close2;
bool run3 = open3 > close3;
if(run3)
{
str[pos] = ')';
_printParenthesis(pos+1, n1, open1, close1, n2, open2, close2, n3, open3, close3+1);
if(open3 < n3)
{
str[pos] = '(';
_printParenthesis(pos+1, n1, open1, close1, n2, open2, close2, n3, open3+1, close3);
}
}
else if(run2 && !run3)
{
str[pos] = '}';
_printParenthesis(pos+1, n1, open1, close1, n2, open2, close2+1, n3, open3, close3);
if(open3 < n3)
{
str[pos] = '(';
_printParenthesis(pos+1, n1, open1, close1, n2, open2, close2, n3, open3+1, close3);
}
if(open2 < n2)
{
str[pos] = '{';
_printParenthesis(pos+1, n1, open1, close1, n2, open2+1, close2, n3, open3, close3);
}
}
else if(run1 && !run2 && !run3)
{
str[pos] = ']';
_printParenthesis(pos+1, n1, open1, close1+1, n2, open2, close2, n3, open3, close3);
if(open3 < n3)
{
str[pos] = '(';
_printParenthesis(pos+1, n1, open1, close1, n2, open2, close2, n3, open3+1, close3);
}
if(open2 < n2)
{
str[pos] = '{';
_printParenthesis(pos+1, n1, open1, close1, n2, open2+1, close2, n3, open3, close3);
}
if(open1 < n1)
{
str[pos] = '[';
_printParenthesis(pos+1, n1, open1+1, close1, n2, open2, close2, n3, open3, close3);
}
}
else if(!run1 && !run2 && !run3)
{
if(open3 < n3)
{
str[pos] = '(';
_printParenthesis(pos+1, n1, open1, close1, n2, open2, close2, n3, open3+1, close3);
}
if(open2 < n2)
{
str[pos] = '{';
_printParenthesis(pos+1, n1, open1, close1, n2, open2+1, close2, n3, open3, close3);
}
if(open1 < n1)
{
str[pos] = '[';
_printParenthesis(pos+1, n1, open1+1, close1, n2, open2, close2, n3, open3, close3);
}
}
}
}
/* driver program to test above functions */
int main()
{
int n1, n2, n3;
n1 = 6;
n2 = 1;
n3 = 1;
printParenthesis(n1, n2, n3);
return 0;
}**
*
There are actually many more than 5 parenthesizations of 4 elements; you don't actually mean "parenthesizations". What you are really asking is the number of different ways N elements can be reduce
d, or the number of trees you can make out of N elements while still keeping them in order.
This corresponds to subdividing the expression exactly N-1 times. For example in this graphic from wikipedia's http://en.wikipedia.org/wiki/Catalan_number article, if we have 4 elements, there are exactly 5 ways to apply a binary operator to it (there will need to be exactly 3 applications, hence there are exactly 3 nodes):
For example, ((a*b)*c)*d, (a*(b*c))*d, (a*b)*(c*d), a*((b*c)*d), a*(b*(c*d))
Here's some concise python code to do it:
def associations(seq, **kw):
"""
>>> associations([1,2,3,4])
[(1, (2, (3, 4))), (1, ((2, 3), 4)), ((1, 2), (3, 4)), ((1, (2, 3)), 4), (((1, 2), 3), 4)]
"""
grouper = kw.get('grouper', lambda a,b:(a,b))
lifter = kw.get('lifter', lambda x:x)
if len(seq)==1:
yield lifter(seq[0])
else:
for i in range(len(seq)):
left,right = seq[:i],seq[i:] # split sequence on index i
# return cartesian product of left x right
for l in associations(left,**kw):
for r in associations(right,**kw):
yield grouper(l,r)
Note how you can substitute interesting function for grouper
with this code, e.g. grouper=list
, or grouper=Tree
, or grouper=...
.
Demo:
for assoc in associations('abcd'):
print assoc
('a', ('b', ('c', 'd')))
('a', (('b', 'c'), 'd'))
(('a', 'b'), ('c', 'd'))
(('a', ('b', 'c')), 'd')
((('a', 'b'), 'c'), 'd')
And, here is some C++ code for the same :
bool is_a_solution( string partial,int n,int k) {
if(partial.length() == n*2 )
return true;
return false;
}
string constructCandidate(int n,string input,string partial, int k) {
int xcount=0,ycount=0;
int count;
int i;
string candi;
if(k == 0)
return string("(");
else {
for(i=0;i<partial.length();i++) {
if( partial[i] == '(') xcount++;
if( partial[i] == ')') ycount++;
}
if( xcount <n) candi+="(";
if( ycount < xcount) candi+=")";
}
return candi;} void backTrack(int n,string input, string partial,int k ) {
int i, numCanditate;
string mypartial;
if( is_a_solution(partial,n,k)) {
cout <<partial<<"\n";
}else {
string candi=constructCandidate(n,input,partial,k);
for(i=0;i<candi.length();i++) {
backTrack(n,input,partial+candi[i],k+1);
}
}
void paranthesisPrint(int n){
backTrack(n,"()", "",0);
}
Here is C# version of generating all possible balanced parenthesized strings from the given n+1 factors.
Note solution for the problem basically satisfies the Catalan recursive relationship (for more details, you may refer to http://codingworkout.blogspot.com/2014/08/all-possible-paranthesis.html, http://en.wikipedia.org/wiki/Catalan_number)
string[] CatalanNumber_GeneratingParanthesizedFactorsRecursive(string s)
{
if(s.Length == 1)
{
return new string[] {s};
}
if(s.Length == 2)
{
string r = "(" + s + ")";
return new string[] { r };
}
List<string> results = new List<string>();
for (int i = 1; i < s.Length; i++)
{
var r1 = this.CatalanNumber_GeneratingParanthesizedFactorsRecursive(
s.Substring(0, i));
var r2 = this.CatalanNumber_GeneratingParanthesizedFactorsRecursive(
s.Substring(i));
foreach(var s1 in r1)
{
foreach(var s2 in r2)
{
string r = "(" + s1 + s2 + ")";
results.Add(r);
}
}
}
return results.ToArray();
}
where
string[] CatalanNumber_GeneratingParanthesizedFactors(string s)
{
s.ThrowIfNullOrWhiteSpace("s");
if(s.Length == 1)
{
return new string[] {s};
}
var r = this.CatalanNumber_GeneratingParanthesizedFactorsRecursive(
s);
return r;
}
And Unit tests are
[TestMethod]
public void CatalanNumber_GeneratingParanthesizedFactorsTests()
{
var CatalanNumbers = new int[] { 1, 1, 2, 5, 14, 42, 132, 429,
1430, 4862, 16796 };
string input = "";
for (int i = 1; i <= 10; i++)
{
input += i;
var results2 = this.CatalanNumber_GeneratingParanthesizedFactors(input);
Assert.AreEqual(results2.Length, CatalanNumbers[input.Length-1]);
Debug.WriteLine("-----------------------------------------------");
foreach (string ss in results2)
{
Debug.WriteLine(ss);
}
}
string s = "a";
var r = this.CatalanNumber_GeneratingParanthesizedFactors(s);
Assert.AreEqual(r.Length, 1);
Assert.AreEqual(s, r[0]);
s = "ab";
r = this.CatalanNumber_GeneratingParanthesizedFactors(s);
Assert.AreEqual("(ab)", r[0]);
s = "abc";
r = this.CatalanNumber_GeneratingParanthesizedFactors(s);
string[] output = new string[] { "(a(bc))", "((ab)c)" };
Assert.AreEqual(2, r.Length);
foreach(var o in output)
{
Assert.AreEqual(1, r.Where(rs => (rs == o)).Count());
}
s = "abcd";
r = this.CatalanNumber_GeneratingParanthesizedFactors(s);
output = new string[] { "(a(b(cd)))", "(a((bc)d))", "((ab)(cd))", "(((ab)c)d)", "((a(bc))d)"};
Assert.AreEqual(5, r.Length);
foreach (var o in output)
{
Assert.AreEqual(1, r.Where(rs => (rs == o)).Count());
}
}