I am trying to figure out whether a angle lies between 2 other angles. I have been trying to create a simple function to perform this but none of my techniques will work for
I've done this before by comparing angles.
In the sketch above vector AD will be between AB and AC if and only if
angle BAD + angle CAD == angle BAC
Because of floating point inaccuracies I compared the values after rounding them first to say 5 decimal places.
So it comes down to having an angle algorithm between two vectors p
and q
which is simply put like:
double a = p.DotProduct(q);
double b = p.Length() * q.Length();
return acos(a / b); // radians
I'll leave the vector DotProduct and Length calculations as a google search exercise. And you get vectors simply by subtracting the coordinates of one terminal from the other.
You should of course first check whether AB and AC are parallel or anti-parallel.
If you have angles $$a$ and $b$, and wan't to see if angle x
is between these angles.
You can calculate the angle between a->x
and a->b
.
If ∠a->x
is less than ∠a->b
, x
must be between a
and b
.
The distance between to angles, a
and b
function distanceBetweenAngles(a, b) {
distance = b - a;
if (a > b) {
distance += 2*pi;
}
return distance;
}
Then you can do
// Checks if angle 'x' is between angle 'a' and 'b'
function isAngleBetween(x, a, b) {
return distanceBetweenAngles(a, b) >= distanceBetweenAngles(a, x);
}
This assumes you are using Radians, and not Degrees, as one should. It removes a lot of unnecessary code.
If you guys have time, check this one out:
bool AngleIsBetween(int firstAngle, int secondAngle, int targetAngle)
{
while (firstAngle >= 360)
firstAngle -= 360;
while (secondAngle >= 360)
secondAngle -= 360;
while (targetAngle >= 360)
targetAngle -=360;
while (firstAngle < 0)
firstAngle += 360;
while (secondAngle < 0)
secondAngle += 360;
while (targetAngle < 0)
targetAngle +=360;
int temp = secondAngle;
if (firstAngle > secondAngle)
{
secondAngle = firstAngle;
firstAngle = temp;
}
if ((secondAngle - firstAngle) > 180)
{
temp = secondAngle - 360;
secondAngle = firstAngle;
firstAngle = temp;
}
return ((targetAngle >= firstAngle) && (targetAngle <= secondAngle));
}
Change the parameters to float if you need to.
Is angle T between angles A and B, there are always two answers: true and false.
We need specify what we mean, and in this case we're looking for the normalized small sweep angles and whether our angle is between those values. Given any two angles, there is a reflex angle between them, is the normalized value of T within that reflex angle?
If we rotate A and B and T such that T = 0 and normalize A and B to within +-hemicircumference (180° or 2PI). Then our answer is whether A and B have different signs, and are within a hemicircumference of each other.
If we subtract the angle from test, then add 180° (so A is relative to T+180). Then we mod by 360 giving us a range between [-360°,360°] we add 360° and mod again (note, you could also just check if it's negative and add 360 if it is), giving us a value that is certain to be [0°,360°]. We subtract 180° giving us a value between [-180°,180°] relative to T+180°-180° aka, T. So T is now angle zero and all angles fall within the normalized range. Now we check to make sure the angles have a sign change and that they are not more than 180° apart, we have our answer.
Because the question asks in C++:
bool isAngleBetweenNormalizedSmallSweepRange(int test, int a, int b) {
int a_adjust = ((((a - test + 180)) % 360) + 360) % 360 - 180;
int b_adjust = ((((b - test + 180)) % 360) + 360) % 360 - 180;
return ((a_adjust ^ b_adjust) < 0) && ((a_adjust - b_adjust) < 180) && ((a_adjust - b_adjust) > -180);
}
We can also do some tricks to simplify out the code and avoid any unneeded modulo ops (see comments below). Normalize will move angle a into the range [-180°,180°] relative to angle t.
int normalized(int a, int test) {
int n = a - test + 180;
if ((n > 360) || (n < -360)) n %= 360;
return (n > 0)? n - 180: n + 180;
}
bool isAngleBetweenNormalizedSmallSweepRange(int test, int a, int b) {
int a_adjust = normalized(a,test);
int b_adjust = normalized(b,test);
return ((a_adjust ^ b_adjust) < 0) &&
((a_adjust > b_adjust)? a_adjust-b_adjust: b_adjust-a_adjust) < 180;
}
Also if we can be sure the range is [0,360], we can make do with a simpler if statement
bool isAngleBetweenNormalizedSmallSweepRange(int test, int a, int b) {
int dA = a - test + 180;
if (dA > 360) {
dA -= 360;
}
int a_adjust = (dA > 0) ? dA - 180 : dA + 180;
int dB = b - test + 180;
if (dB > 360) {
dB -= 360;
}
int b_adjust = (dB > 0) ? dB - 180 : dB + 180;
return ((a_adjust ^ b_adjust) < 0)
&& ((a_adjust > b_adjust) ? a_adjust - b_adjust : b_adjust - a_adjust) < 180;
}
JS Fiddle test of the code
Inspired by a post about Intervals in modular arithmetic:
static bool is_angle_between(int x, int a, int b) {
b = modN(b - a);
x = modN(x - a);
if (b < 180) {
return x < b;
} else {
return b < x;
}
}
where (in case of checking angles) modN()
would be implemented as
// modN(x) is assumed to calculate Euclidean (=non-negative) x % N.
static int modN(int x) {
const int N = 360;
int m = x % N;
if (m < 0) {
m += N;
}
return m;
}
I know this post is old, but there doesn't seem to be an accepted answer and I have found the following approach to be quite reliable. Although it might be more than what you need. It supports angle ranges larger than 180 degrees (as well as larger than 360 degrees and negative angles). It also supports decimal accuracy.
The method uses this normalize()
helper function to convert angles into the right space:
float normalize( float degrees )
{
//-- Converts the specified angle to an angle between 0 and 360 degrees
float circleCount = (degrees / 360.0f);
degrees -= (int)circleCount * 360;
if( 0.0f > degrees )
{
degrees += 360.0f;
}
return degrees;
}
Here's the solution:
bool isWithinRange( float start, float end, float angle )
{
if( fabsf( end - start ) >= 360.0f )
{
//-- Ranges greater or equal to 360 degrees cover everything
return true;
}
//-- Put our angle between 0 and 360 degrees
float degrees = normalize( angle );
//-- Resolve degree value for the start angle; make sure it's
// smaller than our angle.
float startDegrees = normalize( start );
if( startDegrees > degrees )
{
startDegrees -= 360.0f;
}
//-- Resolve degree value for the end angle to be within the
// same 360 degree range as the start angle and make sure it
// comes after the start angle.
float endDegrees = normalize( end );
if( endDegrees < startDegrees )
{
endDegrees += 360.0f;
}
else if( (endDegrees - startDegrees) >= 360.0f )
{
endDegrees -= 360.0f;
}
//-- All that remains is to validate that our angle is between
// the start and the end.
if( (degrees < startDegrees) || (degrees > endDegrees) )
{
return false;
}
return true;
}
Hope this helps someone.