Apparently, x86 (and probably a lot of other instruction sets) put both the quotient and the remainder of a divide operation in separate registers.
Now, we can proba
In Java (since 1.5) the class BigDecimal
has the operation divideAndRemainder
returning an array of 2 elements with the result and de remainder of the division.
BigDecimal bDecimal = ...
BigDecimal[] result = bDecimal.divideAndRemainder(new BigDecimal(60));
Javadoc: https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html#divideAndRemainder-java.math.BigDecimal-
int result,rest;
_asm
{
xor edx, edx // pone edx a cero; edx = 0
mov eax, result// eax = 2AF0
mov ecx, radix // ecx = 4
div ecx
mov val, eax
mov rest, edx
}
The .NET framework has Math.DivRem:
int mod, div = Math.DivRem(11, 3, out mod);
// mod = 2, div = 3
Although, DivRem
is just a wrapper around something like this:
int div = x / y;
int mod = x % y;
(I have no idea whether or not the jitter can/does optimise that sort of thing into a single instruction.)
In C#/.NET you've got Math.DivRem
:
http://msdn.microsoft.com/en-us/library/system.math.divrem.aspx
But according to this thread this isn't that much an optimization.
As Stringer Bell mentioned there is DivRem
which is not optimized up to .NET 3.5.
On .NET 4.0 it uses NGen.
The results I got with Math.DivRem
(debug; release = ~11000ms)
11863
11820
11881
11859
11854
Results I got with MyDivRem
(debug; release = ~11000ms)
29177
29214
29472
29277
29196
Project targeted for x86.
Math.DivRem
Usage example
int mod1;
int div1 = Math.DivRem(4, 2, out mod1);
Method signatures
DivRem(Int32, Int32, Int32&) : Int32
DivRem(Int64, Int64, Int64&) : Int64
.NET 4.0 Code
[TargetedPatchingOptOut("Performance critical to inline across NGen image boundaries")]
public static int DivRem(int a, int b, out int result)
{
result = a % b;
return (a / b);
}
.NET 4.0 IL
.custom instance void System.Runtime.TargetedPatchingOptOutAttribute::.ctor(string) = { string('Performance critical to inline across NGen image boundaries') }
.maxstack 8
L_0000: ldarg.2
L_0001: ldarg.0
L_0002: ldarg.1
L_0003: rem
L_0004: stind.i4
L_0005: ldarg.0
L_0006: ldarg.1
L_0007: div
L_0008: ret
MSDN Reference
FWIW, Haskell has both divMod and quotRem that latter of which corresponds directly to the machine instruction (according to Integral operators quot vs. div) while divMod
may not.