I was unable to find anything describing how to do this, which leads to be believe I\'m not doing this in the proper idiomatic Python way. Advice on the \'proper\' Python w
If you put your data in a collections.defaultdict you won't need to do any explicit initialization. Everything will be initialized the first time it is used.
import numpy as np
import collections
n = 100
data = collections.defaultdict(lambda: np.zeros(n))
for i in range(1, n):
data['g'][i] = data['d'][i - 1]
# ...
Nothing wrong or un-Pythonic with
dData = np.zeros(n)
gData = np.zeros(n)
etc.
You could put them on one line, but there's no particular reason to do so.
dData, gData = np.zeros(n), np.zeros(n)
Don't try dData = gData = np.zeros(n), because a change to dData changes gData (they point to the same object). For the same reason you usually don't want to use x = y = [].
The deal in MATLAB is a convenience, but isn't magical. Here's how Octave implements it
function [varargout] = deal (varargin)
if (nargin == 0)
print_usage ();
elseif (nargin == 1 || nargin == nargout)
varargout(1:nargout) = varargin;
else
error ("deal: nargin > 1 and nargin != nargout");
endif
endfunction
In contrast to Python, in Octave (and presumably MATLAB)
one=two=three=zeros(1,3)
assigns different objects to the 3 variables.
Notice also how MATLAB talks about deal as a way of assigning contents of cells and structure arrays. http://www.mathworks.com/company/newsletters/articles/whats-the-big-deal.html
If you're really motivated to do this in a one-liner you could create an (n_vars, ...) array of zeros, then unpack it along the first dimension:
a, b, c = np.zeros((3, 5))
print(a is b)
# False
Another option is to use a list comprehension or a generator expression:
a, b, c = [np.zeros(5) for _ in range(3)] # list comprehension
d, e, f = (np.zeros(5) for _ in range(3)) # generator expression
print(a is b, d is e)
# False False
Be careful, though! You might think that using the * operator on a list or tuple containing your call to np.zeros() would achieve the same thing, but it doesn't:
h, i, j = (np.zeros(5),) * 3
print(h is i)
# True
This is because the expression inside the tuple gets evaluated first. np.zeros(5) therefore only gets called once, and each element in the repeated tuple ends up being a reference to the same array. This is the same reason why you can't just use a = b = c = np.zeros(5).
Unless you really need to assign a large number of empty array variables and you really care deeply about making your code compact (!), I would recommend initialising them on separate lines for readability.
How about using map:
import numpy as np
n = 10 # Number of data points per array
m = 3 # Number of arrays being initialised
gData, pData, qData = map(np.zeros, [n] * m)